Math, asked by Hemm6aapoopiyanan, 1 year ago

Solve (1+y2)dx = (tan-1y - x)dy


kokan6515: cbse maths exam??

Answers

Answered by kokan6515
205
hope this helps.......
Attachments:
Answered by malini5426
0

Answer:

By solving we get, \left(\tan ^{-1} y-1\right) e^{\tan ^-1} y+c

Step-by-step explanation:

The given differential equation is

&\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y \\

\frac{d x}{d y}+\frac{x}{1+y^{2}}=\frac{\tan ^{-1} y}{1+y^{2}}

which is a linear differential equation.

$$\therefore \mathrm{IF}=e^{\int \frac{d y}{1+y^{2}}}=e^{\tan -1} y$$

Hence, the solution is

&x \cdot e^{\tan -1} y=\int \frac{\tan ^{-1} y e^{\tan -1} y}{1+y^{2}} d y+c \\

&=\int t e^{t} d t+c, t=\tan ^{-1} y \\

&=(t-1) e^{t}+c \\

&=\left(\tan ^{-1} y-1\right) e^{\tan ^-1} y+c

which is the required solution.

Similar questions