Solve 11, ratio problem and give it to me with working.take a pic of your proof.
Attachments:
Answers
Answered by
1
(y +z)/(Pb + qc) = (z+x)/(pc + qa) = (x+y)/(pa+ qb) = K (let )
then,
(y + z) = K(pb + qc) -------(i)
(z + x) =K (pc + qa)------(ii)
(x + y) = K(pa + qb) -------(iii)
add all eqns
(y + z) + (z + x) + (x + y) = K{P(a + b + c) + q(a + b + c)}
=> 2(x + y + z) = K(a+ b + c)[P + q]
=> 2(x + y + z)/(a + b + c) = K(P + q)----(1)
LHS = 2(x + y + z)/(a + b + c)
from eqn (1)
= K(p + q)
RHS = {(b + c)x + (c + a)y + (a + b)z}/(ab + bc + ca)
= {b( z + x) + c(x + y) + a(y + z)}/(ab + bc + ca)
put eqns (i), (ii), (iii) values ,
= {bK(pc+ qa) + c(pa+qb) + a(pb+qc)}/(ab+bc+ ca)
= K{P(ab+bc+ca) + q(ab+bc+ca)}/(ab+bc+ca)
= K(P+q)(ab+bc+ca)/(ab+bc+ca)
= K(p+q)
Hence, LHS = RHS
proved ///
then,
(y + z) = K(pb + qc) -------(i)
(z + x) =K (pc + qa)------(ii)
(x + y) = K(pa + qb) -------(iii)
add all eqns
(y + z) + (z + x) + (x + y) = K{P(a + b + c) + q(a + b + c)}
=> 2(x + y + z) = K(a+ b + c)[P + q]
=> 2(x + y + z)/(a + b + c) = K(P + q)----(1)
LHS = 2(x + y + z)/(a + b + c)
from eqn (1)
= K(p + q)
RHS = {(b + c)x + (c + a)y + (a + b)z}/(ab + bc + ca)
= {b( z + x) + c(x + y) + a(y + z)}/(ab + bc + ca)
put eqns (i), (ii), (iii) values ,
= {bK(pc+ qa) + c(pa+qb) + a(pb+qc)}/(ab+bc+ ca)
= K{P(ab+bc+ca) + q(ab+bc+ca)}/(ab+bc+ca)
= K(P+q)(ab+bc+ca)/(ab+bc+ca)
= K(p+q)
Hence, LHS = RHS
proved ///
Answered by
3
Let the given equal ratios be = k.
Find LHS and RHS by rearranging the terms in the numerators.
See the proof in the picture enclosed.
Find LHS and RHS by rearranging the terms in the numerators.
See the proof in the picture enclosed.
Attachments:
kvnmurty:
Click on the red hearts thanks above
Similar questions