Math, asked by hardeechoudhary, 1 year ago

solve 12abx²-9a²x+8b²x-6ab

Answers

Answered by TanshuTanishk
8

12abx ^{2}  - 9a^{2} x + 8b^{2}x - 6ab \\  = 3ax(4bx - 3a) + 2b(4bx - 3a) \\  = (3ax + 2b)(4bx - 3a)

hardeechoudhary: thanks
TanshuTanishk: welcome
Answered by Anonymous
50

GIVEN:-

 \rm \underline{ \underline{12abx {}^{2}  - (9a {}^{2}  - 8b {}^{2} )x - 6ab = 0}}

TO FIND OUT:-

x =  {?} \\

SOLUTION:-

  \rm \: comparing \:  the \: given \: equation \: with \: Ax {}^{2}  + Bx + C = 0 \:  \: we \: get

 \rm \: A=12ab ,  \rm \: B=-(9a²-8b²),C=-6ab</u></strong><strong><u>

 \rm \: using \: quadratic \: formula \: we \: get</u></strong><strong><u>\</u></strong><strong><u>\</u></strong><strong><u>

 \large \rm \: x =  \frac{ - B∓ \sqrt{B²-4AC}  }{2A} </u></strong><strong><u>

 \rm  \: x =  -[ - (9a²-8b²)]∓ \frac{ \sqrt{[ - (9a²-8b²) - 4(12ab)( - 6ab)}</u></strong><strong><u> }{2(12ab)}

 \large \rm \: x= \frac{9a²-8b²∓ \sqrt{81a² + 64b²-144a²b²+288a²b²} </u></strong><strong><u>}{24ab}

 \large \rm \: x =  \frac{9a²-8b²∓  \sqrt{81a⁴ + 64b⁴ + 144a²b²}  </u></strong><strong><u>}{24ab}

 \large \rm \: x  =  \frac{9a²-8b²∓ \sqrt{(9a²+8b²)²} }{24ab}

 \large \rm \:x=  \frac{9a²-8b²∓(9a²+8b²)}{24b}

   \large\rm \: x =  \frac{9a²-8b² + 9a² + 8b²}{24ab} or \: x= \frac{9a²-8b²-9a²-8b²}{24ab}

 \large \rm \: x =  \frac{18a²}{24b²} , \frac{ - 16b²}{24ab}

 \rm \boxed{ \therefore \: x =  \frac{3a}{4b} , \frac{ - 2b}{3a} }

Similar questions