Math, asked by Anonymous, 5 months ago

solve 15th one.
Don't spam!
Answer if you know only.​

Attachments:

Answers

Answered by anu42468
2
  • 0.733460715935 please mark me as brainlist
Answered by pulakmath007
39

SOLUTION

TO PROVE

 \displaystyle \sf{ \frac{ \sin  {20}^{ \circ} }{ \cos {70}^{ \circ}}  +  \frac{ \tan  {70}^{ \circ}}{ \cot  {20}^{ \circ}}  - 2 \sec  {20}^{ \circ} \sin  {70}^{ \circ} = 0}

FORMULA TO BE IMPLEMENTED

 \sf{1. \:  \: cos( {90}^{ \circ}  -  \theta) =  \sin \theta}

 \sf{2. \:  \: cot( {90}^{ \circ}  -  \theta) =  \tan \theta}

 \sf{3. \:  \: sin( {90}^{ \circ}  -  \theta) =  \cos \theta}

PROOF

LHS

 \displaystyle \sf{ =  \frac{ \sin  {20}^{ \circ} }{ \cos {70}^{ \circ}}  +  \frac{ \tan  {70}^{ \circ}}{ \cot  {20}^{ \circ}}  - 2 \sec  {20}^{ \circ} \sin  {70}^{ \circ} }

 \displaystyle \sf{ =  \frac{ \sin  {20}^{ \circ} }{ \cos ( {90}^{ \circ}   - {20}^{ \circ})}  +  \frac{ \tan  {70}^{ \circ}}{ \cot ( {90}^{ \circ}   -  {70}^{ \circ})}  - 2 \sec  {20}^{ \circ} \sin ( {90}^{ \circ}    - {20}^{ \circ} )}

 \displaystyle \sf{ =  \frac{ \sin  {20}^{ \circ} }{ \sin {20}^{ \circ}}  +  \frac{ \tan  {70}^{ \circ}}{ \tan  {70}^{ \circ}}  - 2 \sec  {20}^{ \circ} \cos {20}^{ \circ} }

 \displaystyle \sf{ = 1 + 1 - 2  \times  \frac{1}{\cos {20}^{ \circ}}  \times  \cos {20}^{ \circ} }

 = 2 - 2

 = 0

= RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2..cot A-tan A /cot A+tan A = cos2A

https://brainly.in/question/9210025


Anonymous: Thnx~
Similar questions