Math, asked by Anonymous, 1 year ago

solve 26 iind part please

Attachments:

Answers

Answered by Anonymous
1
Hii dear here is your answer.....

Construction : Join P and O to get PO

Proof :   Let Radius = r  => BO=PO=AO=r

 POA =2 PBA=2 x 30o = 60o  [ at centre is twice the  subtended on the circle.]

BPA = 90o [  in semicircle.]

PAB = 30o [ by sum prop. in  PAB ]

InPOA,180 - (O + A) =P  =>  P =60o

 Therefore,   POA is equilateral.

Hence, PA=PO=AP =r

 In OPT, O =60o , P = 90o [tangent perpendicular to radius]

By  sum prop., T = 30o

On comparing, BPA TPO { above angles and PO=PA=r} byASA test

By CPCT, BA=TO

BO+OA=OA+TA

2r=r + TA

TA=r

BA/AT = 2r/r  =2/1 = 2:1. …............proved.

hope it helps you☺️☺️☺️
Answered by rockstarbunny111
0

Answer:

Construction : Join P and O to get PO

Proof :   Let Radius = r  => BO=PO=AO=r

POA =2 PBA=2 x 30o = 60o  [ at centre is twice the  subtended on the circle.]

BPA = 90o [  in semicircle.]

PAB = 30o [ by sum prop. in  PAB ]

InPOA,180 - (O + A) =P  =>  P =60o

Therefore,   POA is equilateral.

Hence, PA=PO=AP =r

In OPT, O =60o , P = 90o [tangent perpendicular to radius]

By  sum prop., T = 30o

On comparing, BPA TPO { above angles and PO=PA=r} byASA test

By CPCT, BA=TO

BO+OA=OA+TA

2r=r + TA

TA=r

BA/AT = 2r/r  =2/1 = 2:1. …............proved.

Step-by-step explanation:

Similar questions