Math, asked by Femila, 1 year ago

Solve √2sec theta+tan theta=1

Answers

Answered by Anonymous
16
I hope it helps u.....
Attachments:
Answered by pinquancaro
28

Answer:

\theta=2n\pi-\frac{\pi}{4}

Step-by-step explanation:

Given : Expression \sqrt 2\sec\theta+\tan \theta=1

To find : Solve the expression ?

Solution :

Expression \sqrt 2\sec\theta+\tan \theta=1

\sqrt 2\sec\theta=1-\tan \theta

Squaring both side,

(\sqrt 2\sec\theta)^2=(1-\tan \theta)^2

2\sec^2\theta=(1-\tan \theta)^2

We know, \sec^2\theta=1+\tan^2\theta

2+2\tan^2\theta=1+\tan^2\theta-2\tan\theta

\tan^2\theta+2\tan\theta+1=0

(\tan\theta+1)^2=0

Squaring both side,

\tan\theta+1=0

\tan\theta=-1

\tan\theta=\tan (2n\pi-\frac{\pi}{4})

\theta=2n\pi-\frac{\pi}{4}

Therefore, \theta=2n\pi-\frac{\pi}{4}

Similar questions