Math, asked by muskandalal143, 1 year ago

Solve 2x +3y =1 and 2x - 4y =24. Hence find the value of "m" for which y= mx + 3​

Answers

Answered by rajbibek1992
2

Answer:

Step-by-step explanation:

2x +3y =1 ----------(1)

2x - 4y =24---------(2)

Now (1) - (2) =>  2x + 3y = 1

                        2x - 4y = 24

                       (-)   (+)     (-)

                 --------------------------------------

                              7y    = -23

                           =>    y  =  \frac{-23}{7}

putting value of y in equation (1) we get,

                                  2x + 3 × (\frac{-23}{7}) = 1

                           =>    2x +(\frac{-69}{7}) = 1

                           =>    2x = 1 + \frac{69}{7}

                           =>    2x = \frac{76}{7}

                          =>     x = \frac{76}{7} × \frac{1}{2}

                          =>      x = \frac{38}{7}

Now, if x= 38/7 and y= -23/7

Then,  y =mx + 3 gives

          \frac{-23}{7} = m ×\frac{38}{7} + 3

         =>  m = ((\frac{-23}{7} ) - 3) / \frac{38}{7}

           => m = -49/38

        ∴  m = -22 / 19


muskandalal143: thank u so much buddy for solving my equation
Answered by Anonymous
31

{\huge{\bold{\boxed{\tt{\color{magenta}{answer}}}}}}

2x + 3y = 11…………………………..(i)

2x + 3y = 11…………………………..(i)2x – 4y = -24………………………… (ii)

From equation (ii), we get;

x = (11 – 3y)/2 ……….…………………………..(iii)

Putting the value of x in equation (ii), we get

2[(11 – 3y)/2] – 4y = −24

11 – 3y – 4y = -24

-7y = -35

y = 5……………………………………..(iv)

Putting the value of y in equation (iii), we get;

x = (11 – 15)/2 = -4/2 = −2

Hence, x = -2, y = 5

Also,

y = mx + 3

5 = -2m +3

-2m = 2

m = -1

Therefore, the value of m is -1

Hope it's Helpful....:)

Similar questions