Math, asked by newstarmachine48, 9 months ago

solve 2x+3y=11
3x–y=2​

Answers

Answered by BloomingBud
8
  • x = 17/11
  • y = 29/11

Step-by-step explanation:

\huge{\boxed{\bf{Method\ 1}}}

CROSS MULTIPLICATION METHOD

2x + 3y - 11 = 0  ----(i)

3x - y - 2 = 0​   ----(ii)

Here,

a₁ = 2, b₁ = 3, and c₁ = (-11)

a₂ = 3, b₁ = (-1), and c₁ = (-2)

Now,

\boxed{\bf{x=\frac{b_{1}c_{2}-b_{2}c_{1}}{a_{1}b_{2}-a_{2}b_{1}}}}

\bf{x=\dfrac{[3*(-2)] - [(-1)*(-11)]}{[(2)*(-1)]-[(3)*(3)]}}

\bf{x=\dfrac{[-6 - (11)]}{[(-2)-(9)]}}

\bf{x=\dfrac{-17}{-11}}

\boxed{\bf{x=\frac{17}{11}}}

Now,

\boxed{\bf{y=\frac{c_{1}a_{2}-c_{2}a_{1}}{a_{1}b_{2}-a_{2}b_{1}}}}

\bf{y=\dfrac{[(-11)*(3)]-[(-2)*(2)]}{[(2)*(-1)]-[(3)*(3)]}}

\bf{y=\dfrac{-33-(-4)}{(-2)-(9)}}

\bf{y=\dfrac{-33+4}{-11}}

\bf{y=\dfrac{-29}{-11}}

\boxed{\bf{y=\frac{29}{11}}}

---------------

\huge{\boxed{\bf{Method\ 1}}}

ELIMINATION METHOD

2x + 3y - 11 = 0  ----(i)

3x - y - 2 = 0​   ----(ii)

Multiplying 2 and 3 in eq.(i) and (ii) respectively,

3*(2x + 3y - 11) = 3*0

2*(3x - y - 2​) = 3*0

So,

6x + 9y - 33 = 0   ------(iii)

6x - 2y - 4 = 0  -------(iv)

Now,

By subtraction, we get,

  6x + 9y - 33 = 0  

  6x  - 2y  -  4 = 0

(-)     (+)    (+)

------------------------------

         11y - 29 = 0

------------------------------

Thus,

⇒ 11y -29 = 0

⇒ 11y = 29

⇒ y = 29/11

Now,

  • Putting the value of y in any equation, so we take equation (ii)

⇒ 3x - (29/11) - 2 = 0

⇒ (33x - 29 - 22)/11 = 0

[∵ Taking LCM 11 ]

⇒ 33x - 29 - 22 = 11 * 0

⇒ 33x - 29 - 22 = 0

⇒ 33x - 51 = 0

⇒ 33x = 51

⇒ x = 51/33

⇒ x = 17/11

Answered by Anonymous
10

 \bigstar  \large {\bf { \pink{Given : - }}}

  •   \bf2x + 3y = 11

  •  \bf \: 3x - y = 2

  \bigstar \large\bf {\blue{To \: find : - }}

  •   \bf \sf the \: values \: of \: x \: and \: y

 \bigstar \large{\bf {\green{Solution : - }}}

 \tt \:2x + 3y = 11 \\  \\ :   \implies \tt \: 3y = 11 - 2x \\  \\  :  \implies \tt \: y =  \frac{11 -   2x}{3}  \longrightarrow \: eq(1)

 \tt3x - y = 2 \\  \\  : \implies \tt \:  - y = 2 - 3x \\  \\  :  \implies \tt \:  - (y) =  - (3x - 2) \\  \\  : \tt \implies \: y = 3x - 2 \longrightarrow \: eq(2)

In Both the equations , eq(1) and eq(2) LHS is equal so RHS Can be equated ,

  : \implies \tt \:  \dfrac{11 - 2x}{3}  =  3x - 2 \\  \\  \tt  : \implies \: 11 - 2x = 3(3x - 2) \\  \\  \tt : \implies \: 11 - 2x = 9x - 6 \\  \\  \tt :   \implies \: 11 + 6 = 9x + 2x \\  \\   : \implies \tt \: 17 = 11x \\  \\  \tt  : \implies  {\underline{\boxed {\tt {x =  \frac{17}{11}  }}}}

From eq(2) ,

 \tt  : \implies \: y = 3x - 2 \\  \\  : \implies \tt \:  y  = 3 \bigg( \frac{17}{11} \bigg) - 2 \\  \\  \tt : \implies \: y =  \frac{51}{11} - 2 \\  \\   : \implies \tt y = \frac{51 - 22}{11}   \\  \\  \tt  : \implies {\underline {\boxed {\tt{y =  \frac{29}{11} }}}}

∴ The Values of x and y are \large\sf{\frac{17}{11} \:and\:\frac{29}{11}}

Similar questions