History, asked by Anonymous, 2 months ago

Solve 2x + 3y = 11 and 2x – 4y = -24 and hence find the value of’m’ for which y = mx +3.​

Answers

Answered by Itzcutemuffin
10

▬▬▬ஜ۩۞۩ஜ▬▬▬▬

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

\huge\color{cyan}\boxed{\colorbox{black}{Question ❤}}

Solve 2x + 3y = 11 and 2x – 4y = -24a and hence find the value of’m’ for which y = mx +3.

\huge\color{cyan}\boxed{\colorbox{black}{Answer❤}}

\huge\color{red}\boxed{\colorbox{black}{-1}}

\huge\color{cyan}\boxed{\colorbox{black}{To find}}

Value of m

\huge\color{cyan}\boxed{\colorbox{black}{Solution❤}}

2x+3y=11 \: (eq.1)

2x–4y=−24(eq.2)

subtracting \: eq \: 1 \: from \: 2

2x  - 4y - (2x + 3y) = -24 - 11

\begin{gathered} = > 2x - 4y - 2x - 3y \\ = - 35 \\ \\ =  > \:  - 7y \: = - 35 \\\\ y \: =\frac{ - 35}{ - 7} \\ \\ = > y \: = 5\end{gathered}

\begin{gathered}now, \\for \: the \: value \: of \: x, \\ in \: equation \: 1 \\ putting, \: the \: value \\ of \: y \:in \\ 2x + 3y = 11\end{gathered}

\begin{gathered} = > 2x \: + 3 \times 5 = 11 \\ \\ (value \: of \: y \: = 5) \\ \\ = > 2x \: + \: 15 \: = 11 \\ \\ = > \: 2x \: = 11 - 15 \\ \\ 2x = - 4 \\ \\ = > x = \frac{4}{2} \\ \\ = > x \:= 2\end{gathered}

\begin{gathered}now \: we \: have \: the \: value \\ of \: x \: and \: y \\ \\ so \: putting \: it \: in \\ y = mx + 3\end{gathered}

\begin{gathered} = > 5 = m \times - 2 +4 \\ \\ = > 5-3 = m \times -2 \\ \\= > 2 \: = -2m\\ = > \frac{2}{-2} = m \\ \\= > -1 = m\end{gathered}

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬

Answered by IIMochimchimII
0

Answer:

Hello

Explanation:

\huge\mid\huge\sf\fbox\pink{Aŋswɘʀ}\mid

Answer is in attachment

Hope it's help uh...!!!

Attachments:
Similar questions