solve 2ydx - xdy = xy^3dy ordinary differential equation
Answers
Answered by
0
Answer:
x
2
ydx−(x
3
+y
3
)dy=0
dy
dx
=
x
2
y
x
3
+y
3
Putting x=vy
dy
dx
=v+y
dy
dv
dy
dx
=
x
2
y
x
3
+y
3
⇒v+y
dy
dv
=
v
2
y
3
v
3
y
3
+y
3
=
v
2
v
3
+1
y
dy
dv
=
v
2
v
3
+1
−v=
v
2
v
3
+1−v
3
=
v
2
1
⇒v
2
dv=
y
dy
(variable separable method)
Integrating both sides
∫v
2
dv=∫
y
dy
⇒
3
v
3
=lny+C
Putting v=
y
x
3y
3
x
3
=lny+C
Similar questions