Math, asked by CarrabianPirate, 1 year ago

solve 3-✓5/3-2✓5 = a✓5 + b. Find the value of a and b.

Answers

Answered by gaurav2013c
5
Solution is in the attachment.....
Attachments:
Answered by DaIncredible
3

Identity used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}


 \frac{3 -  \sqrt{5} }{3 - 2 \sqrt{5} }  = a \sqrt{5}  + b \\

L.H.S.

On rationalizing the denominator we get,

 =  \frac{3 -  \sqrt{5} }{3 - 2 \sqrt{5} }  \times  \frac{3 + 2 \sqrt{5} }{3 + 2 \sqrt{5} }  \\  \\  =  \frac{3(3 + 2 \sqrt{5} ) -  \sqrt{5} (3 + 2 \sqrt{5}) }{ {(3)}^{2} -  {(2 \sqrt{5} )}^{2}  }  \\  \\  =  \frac{9 + 6 \sqrt{5}  - 3 \sqrt{5}  - 10 }{9 - 20}  \\  \\  =  \frac{ - 1 + 3 \sqrt{5} }{ - 11}  \\  \\  =  \frac{1 - 3 \sqrt{5} }{11}  \\  \\  =  \frac{ - 3 \sqrt{5} + 1 }{11}

On comparing L.H.S and R.H.S we get,

 \frac{ -  3\sqrt{5} + 1 }{11}  = a \sqrt{5}  + b \\  \\ a =  \frac{ - 3}{11}  \:  :  \: b =  \frac{1}{11}
Similar questions