SOLVE 3(a + 3b) = 11ab , 3(2a +b) = 7ab
Answers
Answered by
88
The answer is given below :
Given,
3 (a + 3b) = 11ab
⇒ 3a + 9b = 11ab ...(i)
3 (2a + b) = 7ab
⇒ 6a + 3b = 7ab ...(ii)
Now, dividing both sides of (i) and (ii) by ab, where both a and b are non-zero, we get
3/b + 9/a = 11
⇒ 9/a + 3/b = 11 ...(iii)
6/b + 3/a = 7
⇒ 3/a + 6/b = 7 ...(iv)
Let us take, 1/a = x and 1/b = y. Then, (iii) and (iv) become
9x + 3y = 11
⇒ 3x + y = 11/3 ...(v)
3x + 6y = 7 ...(iv)
From (iv) and (v), on subtraction, we get
5y = 7 - 11/3
⇒ 5y = (21 - 11)/3
⇒ 5y = 10/3
⇒ y = 2/3
⇒ 1/b = 2/3 [∵ y = 1/b]
⇒ b = 3/2
Putting b = 3/2 in (iii), we get
9/a + 3/(3/2) = 11
⇒ 9/a + 2 = 11
⇒ 9/a = 11 - 2
⇒ 9/a = 9
⇒ 1/a = 1
⇒ a = 1
∴ the required solution be
a = 1 and b = 3/2
Hope it helps you.
Given,
3 (a + 3b) = 11ab
⇒ 3a + 9b = 11ab ...(i)
3 (2a + b) = 7ab
⇒ 6a + 3b = 7ab ...(ii)
Now, dividing both sides of (i) and (ii) by ab, where both a and b are non-zero, we get
3/b + 9/a = 11
⇒ 9/a + 3/b = 11 ...(iii)
6/b + 3/a = 7
⇒ 3/a + 6/b = 7 ...(iv)
Let us take, 1/a = x and 1/b = y. Then, (iii) and (iv) become
9x + 3y = 11
⇒ 3x + y = 11/3 ...(v)
3x + 6y = 7 ...(iv)
From (iv) and (v), on subtraction, we get
5y = 7 - 11/3
⇒ 5y = (21 - 11)/3
⇒ 5y = 10/3
⇒ y = 2/3
⇒ 1/b = 2/3 [∵ y = 1/b]
⇒ b = 3/2
Putting b = 3/2 in (iii), we get
9/a + 3/(3/2) = 11
⇒ 9/a + 2 = 11
⇒ 9/a = 11 - 2
⇒ 9/a = 9
⇒ 1/a = 1
⇒ a = 1
∴ the required solution be
a = 1 and b = 3/2
Hope it helps you.
Answered by
44
Hello User !!!
Your Question is :
3 × ( a + 3b ) = 11ab ......... Equation No. 1
3 × ( 2a + b ) = 7ab ......... Equation No. 2
----------------------------------------------------------------------------------------------------
Equation No. 1
3 × ( a + 3b ) = 11ab
Opening Brackets
3a + 9b = 11ab
Divide both sides by "ab"
3a/ab + 9b/ab = 11ab/ab
3/b + 9/a = 11
----------------------------------------------------------------------------------------------------
Equation No. 2
3 × ( 2a + b ) = 7ab
Opening Brackets
6a + 3b = 7ab
Divide both sides by "ab"
6a/ab + 3b/ab = 7ab/ab
6/b + 3/a = 7
----------------------------------------------------------------------------------------------------
Let 1/b be 'x' and 1/a be 'y'
So Equation No. 1 will be :
3x + 9y = 11
And Equation No. 2 will be :
6x + 3y = 7
----------------------------------------------------------------------------------------------------
Use Elimination Method :
Let make Co efficient of 'y' to 9 in both New Equations
Equation No. 1 :
3x + 9y = 11 It is already 9
Equation No. 2 :
6x + 3y = 7 ....× 3
18x + 9y = 21 Now, it is 9
----------------------------------------------------------------------------------------------------
Using Elimination Method :
3x + 9y = 11
(-) 18x + 9y = 21
----------------------------
-15x - 0 = -10
----------------------------
15x = 10
x = 10/15 = 2/3
----------------------------------------------------------------------------------------------------
Substituting 'x' in Equation No. 1 to get 'y'
3x + 9y = 11
3 × 2/3 + 9y = 11
2 + 9y = 11
9y = 9
y = 1
----------------------------------------------------------------------------------------------------
Now Find 'a' and 'b' :
x = 1/b
So,
2/3 = 1/b [ We know that x = 2/3 ]
b = 3/2
-----------------------------
y = 1/a
So,
1 = 1/a [ We know that y = 1 ]
a = 1
----------------------------------------------------------------------------------------------------
So answer is :
a = 1
b = 3/2 = 1.5
Your Question is :
3 × ( a + 3b ) = 11ab ......... Equation No. 1
3 × ( 2a + b ) = 7ab ......... Equation No. 2
----------------------------------------------------------------------------------------------------
Equation No. 1
3 × ( a + 3b ) = 11ab
Opening Brackets
3a + 9b = 11ab
Divide both sides by "ab"
3a/ab + 9b/ab = 11ab/ab
3/b + 9/a = 11
----------------------------------------------------------------------------------------------------
Equation No. 2
3 × ( 2a + b ) = 7ab
Opening Brackets
6a + 3b = 7ab
Divide both sides by "ab"
6a/ab + 3b/ab = 7ab/ab
6/b + 3/a = 7
----------------------------------------------------------------------------------------------------
Let 1/b be 'x' and 1/a be 'y'
So Equation No. 1 will be :
3x + 9y = 11
And Equation No. 2 will be :
6x + 3y = 7
----------------------------------------------------------------------------------------------------
Use Elimination Method :
Let make Co efficient of 'y' to 9 in both New Equations
Equation No. 1 :
3x + 9y = 11 It is already 9
Equation No. 2 :
6x + 3y = 7 ....× 3
18x + 9y = 21 Now, it is 9
----------------------------------------------------------------------------------------------------
Using Elimination Method :
3x + 9y = 11
(-) 18x + 9y = 21
----------------------------
-15x - 0 = -10
----------------------------
15x = 10
x = 10/15 = 2/3
----------------------------------------------------------------------------------------------------
Substituting 'x' in Equation No. 1 to get 'y'
3x + 9y = 11
3 × 2/3 + 9y = 11
2 + 9y = 11
9y = 9
y = 1
----------------------------------------------------------------------------------------------------
Now Find 'a' and 'b' :
x = 1/b
So,
2/3 = 1/b [ We know that x = 2/3 ]
b = 3/2
-----------------------------
y = 1/a
So,
1 = 1/a [ We know that y = 1 ]
a = 1
----------------------------------------------------------------------------------------------------
So answer is :
a = 1
b = 3/2 = 1.5
Similar questions