Math, asked by CopyThat, 29 days ago

Solve 3a²x² + 11abx + 6b² = 0 , a ≠ 0,
Find out the solution set,
Ans : { -3b/a , -2b/3a }

Answers

Answered by Anonymous
10

Answer:

3a^2x^2 + 11abx + 6b^2 = 0

=> 3a^2x^2 + 9abx + 2abx + 6 b^2 = 0

=> 3ax (ax + 3b) + 2b (ax + 3b) = 0

=> (ax + 3b) (3ax + 2b) = 0 [ By Factorization ]

=> ax + 3b = 0 or 3ax + 2b = 0

[ Zero product rule ]

Step-by-step explanation:

@darkaoul

Answered by VεnusVεronίcα
189

Given :

3a^2x^2+11abx+6b^2=0 \: ; \: a\neq0

 \\

To find :

We have to find the roots/solutions for the given equation/polynomial.

 \\

Solution :

The polynomial  3a^2x^2+11abx+6b^2=0 where  a\neq0, is similar to that of a quadratic equation which is in the form of  ax^2+bx+c=0~~[a\neq0]. Here :

  •  a = 3a^2

  •  b = 11ab

  •  c = 6b^2

Now, by the quadratic formula, we'll find the roots/solutions :

  • First root/solution :

{\underline {\boxed{{x= \frac{-b + \sqrt{b^2-4ac} }{2a } }}}}

:\implies x=  \dfrac{-(11ab) +  \sqrt{(11ab)^2-4(3 {a}^{2} )(6 {b}^{2} )} }{2(3 {a}^{2} )}

:\implies x= \dfrac{-11ab+ \sqrt{121a^2b^2-4(18 {a}^{2} {b}^{2}  )} }{6 {a}^{2} }

:\implies x= \dfrac{-11ab +  \sqrt{121 {a}^{2} {b}^{2} - 72 {a}^{2}    {b}^{2} } }{6 {a}^{2} }

:\implies x= \dfrac{-11ab +  \sqrt{49a^2b^2} }{6a^2}

:\implies x= \dfrac{ - 11ab + 7ab}{6 {a}^{2} }

:\implies x= \dfrac{ - 4ab}{6 {a}^{2} }

:\implies x= \dfrac{-\cancel{2a}(2b)}{\cancel{2a}(3a)}

\underline {\boxed{\therefore \: x= \frac{-2b}{3a} }}

  • Second root/solution :

\underline{\boxed{x= \dfrac{-b- \sqrt{b^2-4ac}}{2a}}}

:\implies x= \dfrac{-11ab -  \sqrt{(11ab)^2-4(3a^2)(6b^2)} }{2(3a)^2}

:\implies x= \dfrac{ - 11ab \sqrt{121 {a}^{2}  {b}^{2} - 4(18 {a}^{2}  {b}^{2})  } }{6 {a}^{2} }

:\implies x= \dfrac{-11ab- \sqrt{121a^2b^2 - 72a^2b^2} }{6 {a}^{2} }

:\implies x= \dfrac{ - 11ab -  \sqrt{49 {a}^{2}  {b}^{2} } }{6 {a}^{2} }

:\implies x= \dfrac{ - 11ab - 7ab}{6 {a}^{2} }

:\implies x=  \dfrac{ - 18ab}{6 {a}^{2} }

:\implies x= \dfrac{ - \cancel{6a}(3b)}{\cancel{6a}(a)}

\underline {\boxed{\therefore \: x= \dfrac{-3b}{a} }}

 \\

_____________________

Hence, the roots are  \dfrac{-2b}{3a} and  \dfrac{-3b}{a}.

Similar questions