Math, asked by anamikayogesh14, 11 months ago

Solve 3x+2y=4, 2x-3y=7 by substitution method

Answers

Answered by ShírIey
180

AnswEr:

\sf{Given\: Equation: 3x + 2y = 4 \:\&\; 2x - 3y = 7}

\sf{3x + 2y = 4 \;\:\:\:\:\;\;\;\;\;\;\;....[Equation\:1]}

\sf{2x - 3y = 7 \;\:\:\:\:\;\;\;\;\;\;\;....[Equation\:2]}

\sf{\;\;\;\:From Equation \;(1)}

\implies\sf 3x + 2y = 4

\implies\sf 2y = 4 - 3x

\implies\sf y = \dfrac{4 -3x}{2}\;\;\;\;\;.....[Equation \;3]

\small\bold{\underline{\underline{\sf{Substituting\:the \; Value\: of \; y \: in \; Equation\; (2)}}}}

\implies\bf 2x - 3y = 7

\implies\sf 2x - 3\bigg(\dfrac{4 - 3x}{2}\bigg) = 7 \:\;\; \; \bigg[ y = \dfrac{4 - 3x}{2}\bigg] \\ \\ \implies\sf 2x - \dfrac{12}{2} + \dfrac{9x}{2} = 7  \\ \\ \implies\sf  2x - 6 + \dfrac{9x}{2} = 7  \\ \\ \implies\sf \dfrac{4x + 9x}{2} = 7 + 6  \\ \\ \implies\sf \dfrac{13}{2}x = 13  \\ \\ \implies\sf x = 13 \times \dfrac{2}{13}  \\ \\ \implies\sf  \cancel\dfrac{26}{13}  \\ \\ \implies\boxed{\bf{x\:=\; 2}}

\rule{150}3

\small\bold{\underline{\underline{\sf{Substituting\:the \; Value\: of \; x \: in \; Equation\; (3)}}}}

\implies\sf 3x + 2y = 4

\implies\sf 3(2) + 2y = 4

\implies\sf 6 + 2y = 4

\implies\sf 2y = 4 - 6

\implies\sf 2y = -2

\implies\sf y = \cancel\dfrac{-2}{\:\;2}

\implies\boxed{\bf{y = -1}}

\bold{\underline{\sf{Hence,\; The \: Value\; of \: x \:\& \; y \: is \; 2 \; \&\; -1.}}}


Anonymous: Wow great
Answered by Saby123
36

 \tt{\huge{\orange {-------- }}}

QUESTION :

Solve 3x+2y=4, 2x-3y=7 by substitution method..

SOLUTION :

Equation 1 :

3x + 2y = 4

Equation 2 :

2x - 3y = 7

=> 2x = 3y + 7

=> x = 3/2 y + 7 / 2

Substituting this value in Equation 1

=> 3 [ 3/2 y + 7 / 2 ] + 2y = 4

=> 9/2 y + 21 / 2 + 2y = 4

=> 9 y + 4 y + 21 = 8

=> 13y = - 13

=> y = -1

=> X = 3 / 2 × ( -1 ) + 7 / 2

=> X = 2

Answer :

Solving we get the following values :

X = 2

Y = -1

Similar questions