Solve 3x+8>2, when
(i) x is an integer
(ii) x is a real number
Answers
Solution:
Given Linear inequality: 3x+8>2
The given inequality can also be written as:
3x+8 -8 > 2 -8 …(1)
In the above inequality, -8 is multiplied on both the sides, as it does not change the definition of the given expression.
Now, simplify the expression (1)
⇒ 3x > -6
Now, both the sides, divide it by 3
⇒ 3x/3 > -6/3
⇒ x > -2
(i) x is an integer
Hence, the integers greater than -2 are -1,0,1,2,…etc
Thus, when x is an integer, the solutions of the given inequality are -1,0,1,2,…
Hence, the solution set for the given linear inequality is {-1,0,1,2,…}
(ii) x is a real number
If x is a real number, the solutions of the given inequality are all the real numbers, which
are greater than 2.
Therefore, in the case of x is a real number, the solution set is (-2, ∞)
Answer:
ps plus I don't think so much more then we have been so long as they were... we was...
pls don't