Math, asked by hibashafqat0, 7 months ago

solve (3x+8)(y^2+4)dx-4y(x^2+5x+6)dy=0, y(1)=2

Answers

Answered by bonmaker2
0

Answer:

Simplifying

(3x + 8)(y2 + 4) * dx + -4y(x2 + 5x + 6) * dy = 0

Reorder the terms:

(8 + 3x)(y2 + 4) * dx + -4y(x2 + 5x + 6) * dy = 0

Reorder the terms:

(8 + 3x)(4 + y2) * dx + -4y(x2 + 5x + 6) * dy = 0

Reorder the terms for easier multiplication:

dx(8 + 3x)(4 + y2) + -4y(x2 + 5x + 6) * dy = 0

Multiply (8 + 3x) * (4 + y2)

dx(8(4 + y2) + 3x * (4 + y2)) + -4y(x2 + 5x + 6) * dy = 0

dx((4 * 8 + y2 * 8) + 3x * (4 + y2)) + -4y(x2 + 5x + 6) * dy = 0

dx((32 + 8y2) + 3x * (4 + y2)) + -4y(x2 + 5x + 6) * dy = 0

dx(32 + 8y2 + (4 * 3x + y2 * 3x)) + -4y(x2 + 5x + 6) * dy = 0

dx(32 + 8y2 + (12x + 3xy2)) + -4y(x2 + 5x + 6) * dy = 0

Reorder the terms:

dx(32 + 12x + 3xy2 + 8y2) + -4y(x2 + 5x + 6) * dy = 0

dx(32 + 12x + 3xy2 + 8y2) + -4y(x2 + 5x + 6) * dy = 0

(32 * dx + 12x * dx + 3xy2 * dx + 8y2 * dx) + -4y(x2 + 5x + 6) * dy = 0

Reorder the terms:

(32dx + 8dxy2 + 12dx2 + 3dx2y2) + -4y(x2 + 5x + 6) * dy = 0

(32dx + 8dxy2 + 12dx2 + 3dx2y2) + -4y(x2 + 5x + 6) * dy = 0

Reorder the terms:

32dx + 8dxy2 + 12dx2 + 3dx2y2 + -4y(6 + 5x + x2) * dy = 0

Reorder the terms for easier multiplication:

32dx + 8dxy2 + 12dx2 + 3dx2y2 + -4y * dy(6 + 5x + x2) = 0

Multiply y * dy

32dx + 8dxy2 + 12dx2 + 3dx2y2 + -4dy2(6 + 5x + x2) = 0

32dx + 8dxy2 + 12dx2 + 3dx2y2 + (6 * -4dy2 + 5x * -4dy2 + x2 * -4dy2) = 0

Reorder the terms:

32dx + 8dxy2 + 12dx2 + 3dx2y2 + (-20dxy2 + -4dx2y2 + -24dy2) = 0

32dx + 8dxy2 + 12dx2 + 3dx2y2 + (-20dxy2 + -4dx2y2 + -24dy2) = 0

Reorder the terms:

32dx + 8dxy2 + -20dxy2 + 12dx2 + 3dx2y2 + -4dx2y2 + -24dy2 = 0

Combine like terms: 8dxy2 + -20dxy2 = -12dxy2

32dx + -12dxy2 + 12dx2 + 3dx2y2 + -4dx2y2 + -24dy2 = 0

Combine like terms: 3dx2y2 + -4dx2y2 = -1dx2y2

32dx + -12dxy2 + 12dx2 + -1dx2y2 + -24dy2 = 0

Solving

32dx + -12dxy2 + 12dx2 + -1dx2y2 + -24dy2 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.

d(32x + -12xy2 + 12x2 + -1x2y2 + -24y2) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve:

Simplifying

d = 0

Solving

d = 0

Move all terms containing d to the left, all other terms to the right.

Simplifying

d = 0

Subproblem 2

Set the factor '(32x + -12xy2 + 12x2 + -1x2y2 + -24y2)' equal to zero and attempt to solve:

Simplifying

32x + -12xy2 + 12x2 + -1x2y2 + -24y2 = 0

Solving

32x + -12xy2 + 12x2 + -1x2y2 + -24y2 = 0

Move all terms containing d to the left, all other terms to the right.

Add '-32x' to each side of the equation.

32x + -12xy2 + 12x2 + -1x2y2 + -32x + -24y2 = 0 + -32x

Reorder the terms:

32x + -32x + -12xy2 + 12x2 + -1x2y2 + -24y2 = 0 + -32x

Combine like terms: 32x + -32x = 0

0 + -12xy2 + 12x2 + -1x2y2 + -24y2 = 0 + -32x

-12xy2 + 12x2 + -1x2y2 + -24y2 = 0 + -32x

Remove the zero:

-12xy2 + 12x2 + -1x2y2 + -24y2 = -32x

Add '12xy2' to each side of the equation.

-12xy2 + 12x2 + -1x2y2 + 12xy2 + -24y2 = -32x + 12xy2

Reorder the terms:

-12xy2 + 12xy2 + 12x2 + -1x2y2 + -24y2 = -32x + 12xy2

Combine like terms: -12xy2 + 12xy2 = 0

0 + 12x2 + -1x2y2 + -24y2 = -32x + 12xy2

12x2 + -1x2y2 + -24y2 = -32x + 12xy2

Add '-12x2' to each side of the equation.

12x2 + -1x2y2 + -12x2 + -24y2 = -32x + 12xy2 + -12x2

Reorder the terms:

12x2 + -12x2 + -1x2y2 + -24y2 = -32x + 12xy2 + -12x2

Combine like terms: 12x2 + -12x2 = 0

0 + -1x2y2 + -24y2 = -32x + 12xy2 + -12x2

-1x2y2 + -24y2 = -32x + 12xy2 + -12x2

Add 'x2y2' to each side of the equation.

-1x2y2 + x2y2 + -24y2 = -32x + 12xy2 + -12x2 + x2y2

Combine like terms: -1x2y2 + x2y2 = 0

0 + -24y2 = -32x + 12xy2 + -12x2 + x2y2

-24y2 = -32x + 12xy2 + -12x2 + x2y2

Add '24y2' to each side of the equation.

-24y2 + 24y2 = -32x + 12xy2 + -12x2 + x2y2 + 24y2

Combine like terms: -24y2 + 24y2 = 0

0 = -32x + 12xy2 + -12x2 + x2y2 + 24y2

Simplifying

0 = -32x + 12xy2 + -12x2 + x2y2 + 24y2

The solution to this equation could not be determined.

This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

Answered by ashharkashfia552
0

Answer:

(x+2)²(x+3)/(y²+4)²=c

Step-by-step explanation:

separate out variables

(3x+8)/x²+5x+6dx=4y/y²+4

Middle term break

(2x+6+x+2)/(x+3)(x+2)dx=2*2y/y²+4)dy

LCM break

2/x+2dx+1/x+3dx=2×2y/y²+4dy

Integrating both sides

2ln(x+2)+ln(x+3)=2ln(y²+4)+C

ln(x+2)²(x+3)=ln(y²+4)²+c

(x+2)²(x+3)/(y²+4)=c

Similar questions