Math, asked by ushaswi2209, 8 months ago

solve 48/x + y-6/x-y=10 and
15/x+y+4/x-y=9​

Answers

Answered by DEVANSHHOTA010
1

Answer:

(1) : ( x,y) = (12,3)

(2) : ( x,y) = ( 8,3)

Answered by mysticd
4

 Given \: pair \: equations :

 \frac{48}{x+y} - \frac{6}{x-y} = 10 \: --(1)

and \:  \frac{15}{x+y} + \frac{4}{x-y} = 9 \: --(2)

 If \: we \: substitute \: \frac{1}{x+y} = a \: and

 \frac{1}{x-y} = b, we \:get \:the \: following

 pair \:of: linear \:equations

 48a - 6b = 10

/* Dividing each term by 2 , we get */

 \implies 24a - 3b = 5 \: --(3)

 and \: 15a + 4b = 9 \: ---(4)

 Equation (3) \times 4 : 96a-12b = 20 \:--(5)

 Equation (4) \times 3 : 45a+12b = 27\:--(6)

/* Add Equations (1) and (2) , we get */

 141a = 47

 \implies a = \frac{47}{141}

 \implies a = \frac{1}{3} \: --(7)

/* Substitute the value of 'a' in equation (4), */

 15 \times \frac{1}{3} + 4b = 9

 \implies 5 + 4b = 9

 \implies  4b = 9 - 5

 \implies  4b = 4

 \implies  b = \frac{4}{4}

 \implies b = 1

 But , \frac{1}{x+y} =a =  \frac{1}{3}

 \implies x + y = 3 \: --(8)

 But , \frac{1}{x-y} =b =  1\: --(9)

 \implies x - y = 1 \: --(9)

/* Add Equations (8) and (9) ,we get */

 2x = 4

 \blue { x = 2 }

/* Put x = 2 in equation (8), we get */

 \blue { y = 1 }

Therefore.,

 \green { x = 2 \: and \: y = 1 }

•••♪

Similar questions