Math, asked by kishangopalmeena18, 4 months ago

solve:
√5 ( 1 + √5 ) x= 2√5 + 4

right answer person will be marked as brainiest.
if answer is with proper explanation​

Answers

Answered by pranjalgarje2009
2

Answer:

question me error hai

Answered by Flaunt
60

\huge\bold{\gray{\sf{Answer:}}}

Explanation:

 \sqrt{5} (1 +  \sqrt{5} )x = 2 \sqrt{5}  + 4

 =  > ( \sqrt{5}  + 5)x = 2 \sqrt{5}  + 4

 =  > x =  \frac{2 \sqrt{5}  + 4}{ \sqrt{5}  + 5}  =  \frac{4 + 2 \sqrt{5} }{5 +  \sqrt{5} }

Here,we Rationalising means multiply both numerator and denominator with opposite sign of denominator to remove root from the denominator and shift towards numerator.

 =  > x =  \frac{4 + 2 \sqrt{5} }{5 +  \sqrt{5} }  \times  \frac{5 -  \sqrt{5} }{5 -  \sqrt{5} }

 =  > x =  \frac{5(4 + 2 \sqrt{5}) -  \sqrt{5} (4 + 2 \sqrt{5}  )}{ {(5)}^{2}  -  {( \sqrt{5} )}^{2} }

Here,in the denominator this identity used :-

\bold{\boxed{\purple{(x + y)(x - y) =  {x}^{2}  -  {y}^{2} }}}

 =  >  \frac{20 + 10 \sqrt{5}  - 4 \sqrt{5}  - 10}{25 - 5}

 =  >  \frac{20 + 6 \sqrt{5}  - 10}{20}

 =  >  \frac{10 + 6 \sqrt{5} }{20}  =  \frac{2(5 + 3 \sqrt{5}) }{20}

\bold{\boxed{\boxed{\red{ x=   \frac{5 + 3 \sqrt{5} }{10}  \: or \: x =  \frac{1}{2}  +  \frac{3 \sqrt{5} }{10}}}}}

Similar questions