solve 7,9 and 10th questions.... plz
Attachments:
Answers
Answered by
1
Co-ordinates of x(3,1/3)
Here is the 7th ans..... Hope it helps u!!
Here is the 7th ans..... Hope it helps u!!
Attachments:
Answered by
1
1.... 4√3 x² +5x -2√3 =0
⇒4√3 x² +8x -3x -2√3=0
⇒4x(√3 x+2) -√3(√3x +2) =0
⇒(√3x +2)(4x -√3) =0
⇒(√3x +2) =0 or (4x-√3) =0
⇒x = -2/√3 or √3/4
2.....x=3,y=a
2x-3y-5=0
2(3)-3(a)-5=0
6-3a=5
6-5=3a
3a=1
a=1/3
3....
ΔABE is a right triangle, right angled at B
AB²+BE² = AE²……………..(1)
(by the Pythagoras theorem)
ΔDBC is a right triangle, right angled at B
DB²+BC² = CD²…………….(2)
(by the Pythagoras theorem
Adding eq 1 & 2
AE²+CD²= (AB²+BE²)+(BD²+BC²)
AE²+CD²= (AB²+BC²)+(BE²+BD²)......(3)
[Rearranging the terms]
ΔABC is a right triangle,
AB²+BC² = AC²…………….(4)
(by the Pythagoras theorem)
Δ DBE is a right triangle
DB²+BE² = DE²………………(5)
(by the Pythagoras theorem)
AE²+CD²= (AB²+BC²)+(BE²+BD²)
AE²+CD²= AC²+DE²
[ From equation 4 and 5]
⇒4√3 x² +8x -3x -2√3=0
⇒4x(√3 x+2) -√3(√3x +2) =0
⇒(√3x +2)(4x -√3) =0
⇒(√3x +2) =0 or (4x-√3) =0
⇒x = -2/√3 or √3/4
2.....x=3,y=a
2x-3y-5=0
2(3)-3(a)-5=0
6-3a=5
6-5=3a
3a=1
a=1/3
3....
ΔABE is a right triangle, right angled at B
AB²+BE² = AE²……………..(1)
(by the Pythagoras theorem)
ΔDBC is a right triangle, right angled at B
DB²+BC² = CD²…………….(2)
(by the Pythagoras theorem
Adding eq 1 & 2
AE²+CD²= (AB²+BE²)+(BD²+BC²)
AE²+CD²= (AB²+BC²)+(BE²+BD²)......(3)
[Rearranging the terms]
ΔABC is a right triangle,
AB²+BC² = AC²…………….(4)
(by the Pythagoras theorem)
Δ DBE is a right triangle
DB²+BE² = DE²………………(5)
(by the Pythagoras theorem)
AE²+CD²= (AB²+BC²)+(BE²+BD²)
AE²+CD²= AC²+DE²
[ From equation 4 and 5]
Hruthika123:
the other two questions
Similar questions