Math, asked by premabhijith, 3 months ago

solve a/x-a+b/x-b=2c/x-C​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{a}{x - a}  + \dfrac{b}{x - b}  = \dfrac{2c}{x - c}

\rm :\longmapsto\:\dfrac{a(x - b) + b(x - a)}{(x - a)(x - b)}  = \dfrac{2c}{x - c}

\rm :\longmapsto\:\dfrac{ax - ab + bx - ab}{(x - a)(x - b)}  = \dfrac{2c}{x - c}

\rm :\longmapsto\:\dfrac{ax + bx - 2ab}{ {x}^{2} - ax - bx + ab }  = \dfrac{2c}{x - c}

\rm :\longmapsto\:(x - c)(ax + bx - 2ab) = 2c( {x}^{2}  - ax - bx + ab)

 \rm \: {ax}^{2}+{bx}^{2} -2abx-cax-cbx+ 2abc={2cx}^{2}-2acx-2bcx+2abc

 \rm \: {ax}^{2}+{bx}^{2} -2abx-cax-cbx={2cx}^{2}-2acx-2bcx

 \rm \: {ax}^{2}+{bx}^{2} -2abx-cax-cbx - {2cx}^{2} + 2acx + 2bcx = 0

 \rm \: {ax}^{2}+{bx}^{2} -2abx + cax + cbx - {2cx}^{2}= 0

 \rm \: {(a + b - 2c)x}^{2}  + x(-2ab + ca + cb)= 0

 \rm \:x \bigg((a + b - 2c)x  -2ab + ca + cb\bigg)= 0

\rm :\implies\:x = 0 \:  \:  \: or \: x = \dfrac{2ab - ac - bc}{a + b - 2c}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Similar questions