Math, asked by shashu8484, 10 months ago

Solve ab^-1c^3/5 divided by a^-3/2b^2c^1/3xab^2c^2

Answers

Answered by Rohith200422
6

Question:

 \frac{ {ab}^{ - 1} \times  - 1 {c}^{ \frac{3}{5} }  }{ \frac{ {a}^{ - 3} }{2 {b}^{2} } \times 2 {c}^{ \frac{1}{3} } \times ab \times  {c}^{2}   }

Answer:

\underline\bold{ {-c}^{\frac{18}{5}}{4b}^{-2} } \: is \: the \: answer.

Step-by-step explanation:

 \frac{ {ab}^{ - 1} \times  - 1 {c}^{ \frac{3}{5} }  }{ \frac{ {a}^{ - 3} }{2 {b}^{2} } \times 2 {c}^{ \frac{1}{3} } \times ab \times  {c}^{2}   }

Now rationalising the numerator,

\Rightarrow {ab}^{ - 1} \times  - 1 {c}^{ \frac{3}{5} }

 {ab}^{ - 1} =  \frac{1}{ab} =  \frac{1}{a} \times  \frac{1}{b}

\Rightarrow  \frac{1}{a} \times  \frac{1}{b}   \times  -  {c}^{ \frac{3}{5} }

Now rationalising the denominator,

 \frac{ {a}^{ - 3} }{2 {b}^{2} } \times 2 {c}^{ \frac{1}{3} } \times a{b}^{2} \times  {c}^{2}

 =  \frac{2 {b}^{2} }{ {a}^{3} } \times 2 {c}^{ \frac{1}{3} }

 =  \frac{4 {b}^{2} \times 2 {c}^{ \frac{1}{3} }  }{ {a}^{3} }

Now,

\Rightarrow  \frac{ \frac{1}{a} \times  \frac{1}{b} \times  -  {c}^{ \frac{3}{5} }   }{ \frac{4 {b}^{2} \times  {c}^{ \frac{2}{3} }  }{ {a}^{3} }×ab×{c}^{2} }

\Rightarrow  \frac{ -  {c}^{ \frac{3}{5} } }{4b {c}^{ \frac{1}{3} } × {c}^{2} }

\Rightarrow  \frac{ -  {c}^{ \frac{3}{5} } \times  {c}^{ \frac{3}{1} }×{c}^{2}  }{{4b}^{2}}

\Rightarrow  \frac{ -  {c}^{ \frac{18}{5} } }{{4b}^{2}}

\Rightarrow\boxed{{-c}^{\frac{18}{5}}{4b}^{-2}}

Formula used:

 {mn}^{ - 1}  =  \frac{1}{mn}

 \frac{ {m}^{a} }{ {n}^{b} }  =  {m}^{a} {n}^{ - b}

Similar questions