Math, asked by vivraj, 1 year ago

Solve above questions

Attachments:

Answers

Answered by Muskan1101
8
Here's your answer !!

_________________________________


1) It is given that,

 \: a \: = 3 - 2 \sqrt{2}

We have to find value of ,

 = > {a}^{2} - \frac{1}{ {a}^{2} }

Let's find it ,

 = > a = 3 - 2 \sqrt{2}

So,

 = > \frac{1}{a} = \frac{1}{3 - 2 \sqrt{2} }

We will now rationalize it :-

 = > \frac{1}{3 - 2 \sqrt{2} } \times \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }

 = > \frac{3 + 2 \sqrt{2} }{ {(3)}^{2} - ({2 \sqrt{2}) }^{2} }

 = > \frac{3 + 2 \sqrt{2} }{1}

So,

 = > \frac{1}{a} = 3 + 2 \sqrt{2}

Now,

 = >( a + \frac{1}{a} ) = 3 - 2 \sqrt{2} + 3 + 2 \sqrt{2}

 - 2 \sqrt{2} \: and \: 2 \sqrt{2} \: \: get \: \: \: cancelled

 = > (a + \frac{1}{a}) = 6

And,

 = > (a - \frac{1}{a} ) = 3 - 2 \sqrt{2} - (3 + 2 \sqrt{2} )

 = > (a - \frac{1}{a} ) = 3 - 2 \sqrt{2} - 3 - 2 \sqrt{2}

3 \: and \: - 3 \: get \: cancelled

 = > (a - \frac{1}{a}) = - 4 \sqrt{2}

We know that,

 {a}^{2} + \frac{1}{ {a}^{2} } = (a + \frac{1}{a})(a - \frac{1}{a} )

 = > 6 \times ( - 4 \sqrt{2} ) \\ = > - 24 \sqrt{2}

=====================================

2) It's given that,

 = > x = 2 - \sqrt{3}

We have to find value of ,

 = > {(x - \frac{1}{x}) }^{3}

if \: x = 2 - \sqrt{3}

So,

 = > \frac{1}{x} = \frac{1}{2 - \sqrt{3} }

We will now rationalize it :-

 = > \frac{1}{2 - \sqrt{3} } \times \frac{2 + \sqrt{3} }{2 + \sqrt{3} }

 = > \frac{2 + \sqrt{3} }{ {(2)}^{2} - {( \sqrt{3} )}^{2} }

 = > \frac{2 + \sqrt{3} }{1}

So,

 = > \frac{1}{x} = 2 + \sqrt{3}

Now,

 = > (x - \frac{1}{x} ) = 2 - \sqrt{3} - (2 + \sqrt{3} )

 = > (x - \frac{1}{x}) = 2 - \sqrt{3} - 2 - \sqrt{3}

2 \: and \: - 2 \: get \: cancelled

 = > (x - \frac{1}{x} ) = - 2 \sqrt{3}

By cubing both side ,we get :-

 = > {(x - \frac{1}{x}) }^{3} = {( - 2 \sqrt{3}) }^{2}

 = > {(x - \frac{1}{x} )}^{3} = - 24 \sqrt{3}

__________________________________

Hope it helps you !! :)

rakeshmohata: incorrect h
rakeshmohata: Na correct h!!
rakeshmohata: awesome answer!! ❤️❤️✌️❤️✌️
Muskan1101: Thanks :)
Similar questions