Physics, asked by ad200421, 11 months ago

Solve and answer both the question neglecting 'OR' in brief.​

Attachments:

Answers

Answered by shadowsabers03
0

We have,

\longrightarrow\sf{H=\dfrac {V^2t}{R}}

For constant \sf{V} and \sf{t},

\longrightarrow\sf{H\propto\dfrac {1}{R}\quad\quad\dots(1)}

Here,

\longrightarrow\sf{R_A=2\ \Omega}

\longrightarrow\sf{R_B=2\ \Omega+2\ \Omega=4\ \Omega}

\longrightarrow\sf{R_C=\dfrac {2\ \Omega\cdot2\ \Omega}{2\ \Omega+2\ \Omega}=1\ Omega}

Hence,

\longrightarrow\sf{R_C\ \textless\ R_A\ \textless\ R_B}

Therefore, by (1),

\longrightarrow\sf{H_C\ \textgreater\ H_A\ \textgreater\ H_B}

Thus, heat produced is (c) maximum in C.

=================================

We have,

\longrightarrow\sf{R=\dfrac {V^2}{P}}

Then,

\longrightarrow\sf{\dfrac {R_1}{R_2}=\dfrac {P_2(V_1)^2}{P_1(V_2)^2}}

\longrightarrow\sf{\dfrac {R_1}{R_2}=\dfrac {20\times220^2}{40\times 100^2}}

\longrightarrow\sf{\bf{R_1:R_2=2.42:1}}

Or,

\longrightarrow\sf{\bf{R_1:R_2=2:1}}

Similar questions