Solve and check your result
a) 3x – 1 = 11
b) 7 + 5a = 5
Answers
The above question can be written as, ⇒[(×(3−1)−(×(x))/35=3 [Taking L.C.M of 5 and 7]
⇒((21−7−(5x))/3=3
⇒(21−7−5x)/3=3
⇒(16x−7)/35=3...[Multiplying both side by 35]
⇒[(16x−7)/35]×35=3×35
⇒16x−7=105
⇒16x=105+7
⇒16x=105+7
⇒16x=112...[Multiplying both side by 1/16]
⇒16x×(1/16)=112×(1/16)
⇒x=7
By substituting 7 in the place of x in given equation, we get
LHS,
=(16x−7)/35
=((16×7)−7)/35
(112−7)/35
=(105/35)
=3
RHS,
=3
By comparing LHS and RHS
⇒(4/3)=(4/3)
∴LHS=RHS
Hence, the result is verified.
Question:-
i) 3x - 1 = 11
ii) 7 + 5a = 5
Solution:-
i) 3x - 1 = 11
= 3x = 11 + 1
= 3x = 12
= x = 12/3
= x = 4
ii) 7 + 5a = 5
= 5a = 5 - 7
= 5a = -2
= a = -2/5
= a = -0.4
Verification:-
i) 3x - 1 = 11
= (3 × 4) - 1 = 11 (replace the value of x)
= 12 - 1 = 11
hence, verified
ii) 7 + 5a = 5
= 7 + (5 × -0.4) = 5 (replace the value of x)
= 7 + (-2) = 5
= 7 - 2 = 5 ( + - = -)