Math, asked by rinkukumarrahul, 8 months ago

solve and explain briefly solve fast​

Attachments:

Answers

Answered by spacelover123
1

1.  दिए गए प्रश्न में हमें दी गई संख्याओं की तुलना करने की आवश्यकता है।

(In the given question we need to compare the numbers given.)

(i) \frac{7}{8} और \frac{3}{5}

LCM of denominators = 40

\frac{7*5}{8*5}=\frac{35}{40}

\frac{3*8}{5*8} =\frac{24}{40}

\frac{35}{40} > \frac{24}{40}

(ii) \frac{12}{15} और \frac{11}{16}

LCM of denominators = 240

\frac{12*16}{15*16} =\frac{192}{240}

\frac{11*15}{16*15}=\frac{165}{240}

\frac{192}{240} > \frac{165}{240}

(iii) \frac{8}{9} और \frac{6}{7}

LCM of denominators = 63

\frac{8*7}{9*7} =\frac{56}{63}

\frac{6*9}{7*9}=\frac{54}{63}

\frac{56}{63} > \frac{54}{63}

2.  प्रश्न में हमें आरोही क्रम में संख्याओं को व्यवस्थित करने की आवश्यकता है।

(In the question we need to arrange the numbers in ascending order)

(i) \frac{2}{5}, \frac{3}{4} ,\frac{7}{9} ,\frac{5}{12} ,\frac{8}{11}

LCM of denominators = 1980

\frac{2*396}{5*396} =\frac{792}{1980}

\frac{3*495}{4*495} = \frac{1485}{1980}

\frac{7*220}{9*220} =\frac{1540}{1980}

\frac{5*165}{12*165} =\frac{825}{1980}

\frac{8*180}{11*180}=\frac{1440}{1980}

\frac{792}{1980}<\frac{825}{1980} <\frac{1440}{1980} <\frac{1485}{1980} <\frac{1540}{1980}

\frac{2}{5}<\frac{5}{12}<\frac{8}{11}<\frac{3}{4}<\frac{7}{9}

(ii) (Complete question isn't mentioned so therefore I didn't solve it.)

Similar questions