Math, asked by sravanthivaranasi2, 6 months ago

solve answer please​

Attachments:

Answers

Answered by Anonymous
1

Answer:

c................ .......

Answered by Dhivyarunega
0

Answer:

21

Step-by-step explanation:

19 - 4 \sqrt{x}  = ( \sqrt{12}  -  \sqrt{7}) {}^{2}   \\ 19 - 4 \sqrt{x}  =  \sqrt{12 {} }  {}^{2}  +  \sqrt{7}  {}^{2}  - 2 \sqrt{12}  \sqrt{7}  \\ 19 - 4 \sqrt{x}  = 12 + 7 - 2 \sqrt{12}  \sqrt{7}  \\  - 4 \sqrt{x}  = 19 - 2 \sqrt{12}  \sqrt{7}  - 19 \\  - 4 \sqrt{x}  =  - 2 \sqrt{12}  \sqrt{7 }  \\  \sqrt{x}  = (2 \sqrt{12}  \sqrt{7}  ) \div 4 \\  \sqrt{x}  = ( \sqrt{12}  \sqrt{7} ) \div 2 \\ x = (( \sqrt{12 \ }  \sqrt{7) }  \div 2) {}^{2}  \\ x = (12 \times 7) \div 4 \\ x = 21

Similar questions