Math, asked by spacemaster7, 9 months ago

Solve : ax/b - bx/a = a^2 - b^2.​

Answers

Answered by rohan291103
0

Step-by-step explanation:

please see the pic attached

please mark brainliest answer.....

Attachments:
Answered by 456789aman
0

Answer:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

               (a*x/b)-(b*x/a)-(((a+b)^2)/a*b)=0

Step-by-step explanation:

Step by step solution :

Step  1  :

           (a + b)2

Simplify   ————————

              a    

Equation at the end of step  1  :

     x     x    (a+b)2

 ((a•—)-(b•—))-(——————•b)  = 0

     b     a      a  

Step  2  :

Equation at the end of step  2  :

     x     x   b•(a+b)2

 ((a•—)-(b•—))-————————  = 0

     b     a      a    

Step  3  :

           x

Simplify   —

           a

Equation at the end of step  3  :

     x     x   b•(a+b)2

 ((a•—)-(b•—))-————————  = 0

     b     a      a    

Step  4  :

           x

Simplify   —

           b

Equation at the end of step  4  :

       x     xb     b • (a + b)2

 ((a • —) -  ——) -  ————————————  = 0

       b     a           a      

Step  5  :

Calculating the Least Common Multiple :

5.1    Find the Least Common Multiple

     The left denominator is :       b

     The right denominator is :       a

                 Number of times each Algebraic Factor

           appears in the factorization of:    Algebraic    

   Factor      Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

a  0 1 1

b  1 0 1

     Least Common Multiple:

     ab

Calculating Multipliers :

5.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = a

  Right_M = L.C.M / R_Deno = b

Making Equivalent Fractions :

5.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      ax • a

  ——————————————————  =   ——————

        L.C.M               ab  

  R. Mult. • R. Num.      xb • b

  ——————————————————  =   ——————

        L.C.M               ab  

Adding fractions that have a common denominator :

5.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

ax • a - (xb • b)     a2x - xb2

—————————————————  =  —————————

       ab                ab    

Equation at the end of step  5  :

 (a2x - xb2)    b • (a + b)2

 ——————————— -  ————————————  = 0

     ab              a      

Step  6  :

Step  7  :

Pulling out like terms :

7.1     Pull out like factors :

  a2x - xb2  =   x • (a2 - b2)

Trying to factor as a Difference of Squares :

7.2      Factoring:  a2 - b2

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =

        A2 - AB + BA - B2 =

        A2 - AB + AB - B2 =

        A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  a2  is the square of  a1

Check :  b2  is the square of  b1

Factorization is :       (a + b)  •  (a - b)

Calculating the Least Common Multiple :

7.3    Find the Least Common Multiple

     The left denominator is :       ab

     The right denominator is :       a

                 Number of times each Algebraic Factor

           appears in the factorization of:    Algebraic    

   Factor      Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

a  1 1 1

b  1 0 1

     Least Common Multiple:

     ab

Calculating Multipliers :

7.4    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 1

  Right_M = L.C.M / R_Deno = b

Making Equivalent Fractions :

7.5      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      x • (a+b) • (a-b)

  ——————————————————  =   —————————————————

        L.C.M                    ab        

  R. Mult. • R. Num.      b • (a+b)2 • b

  ——————————————————  =   ——————————————

        L.C.M                   ab      

Adding fractions that have a common denominator :

7.6       Adding up the two equivalent fractions

x • (a+b) • (a-b) - (b • (a+b)2 • b)     a2x - a2b2 - 2ab3 - xb2 - b4

————————————————————————————————————  =  ————————————————————————————

                 ab                                   ab            

Equation at the end of step  7  :

 a2x - a2b2 - 2ab3 - xb2 - b4

 ————————————————————————————  = 0

              ab            

Step  8  :

When a fraction equals zero :

8.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

 a2x-a2b2-2ab3-xb2-b4

 ———————————————————— • ab = 0 • ab

          ab        

Now, on the left hand side, the  ab  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :

  a2x-a2b2-2ab3-xb2-b4  = 0

Solving a Single Variable Equation :

8.2     Solve   a2x-a2b2-2ab3-xb2-b4  = 0

Similar questions