Math, asked by husenhusen7425, 5 months ago

solve: (b)9/11-4/15​

Answers

Answered by Anonymous
9

\Large\bf{\underline{\underline{Question:-}}}

Solve:

\Large\sf\frac{9}{11} - \frac{4}{15}

\Large\bf{\underline{\underline{Solution:-}}}

Here,

\Large\sf\frac{9}{11} - \frac{4}{15}

Taking LCM of 11 and 15, we have

= \Large\sf\frac{135 - 44}{165}

= \Large\sf\frac{91}{165}

Hence the required value is \Large{\boxed{\frac{91}{165}}}

\pink{Hope \: it \: helps}

Answered by suraj5070
122

 \tt \huge {\boxed {\mathbb {QUESTION}}}

 \tt {solve:}

 \tt \dfrac{9}{11}-\dfrac{4}{15}

 \tt \huge {\boxed {\mathbb {ANSWER}}}

 \tt \implies \dfrac{9}{11}-\dfrac{4}{15}

 \tt {By\:Taking\:LCM}

 \tt \implies \dfrac{135-44}{165}

 \tt \implies \dfrac{91}{165}

 \tt \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

_________________________________________

 \tt \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \tt {Identities}

 \tt {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}

 \tt {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}

 \tt (a+b) (a-b) ={a}^{2}-{b}^{2}

 \tt{\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions