Math, asked by Anonymous, 9 days ago

Solve both the questions in the attachment!!

Don't spam​

Attachments:

Answers

Answered by mathdude500
20

\large\underline{\sf{Solution-22}}

Consider,

\rm :\longmapsto\:\dfrac{ \sqrt{7}  + i \sqrt{3} }{ \sqrt{7}  - i \sqrt{3}}  + \dfrac{ \sqrt{7} - i \sqrt{3}  }{ \sqrt{7} + i \sqrt{3}  }

On taking LCM, we get

\rm \:  =  \: \dfrac{ {( \sqrt{7} + i \sqrt{3})}^{2} +  {( \sqrt{7}  - i \sqrt{3})}^{2} }{( \sqrt{7} + i \sqrt{3})( \sqrt{7} - i \sqrt{3})}

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})}}} \\

and

 \purple{\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}} \\

So, using these Identities, we get

\rm \:  =  \: \dfrac{2\bigg[ {( \sqrt{7})}^{2}  +  {(i \sqrt{3}) }^{2} \bigg]}{ {( \sqrt{7}) }^{2} -  {(i \sqrt{3})}^{2}  }

\rm \:  =  \: \dfrac{2(7 + 3 {i}^{2})}{7 -  {3i}^{2} }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {i}^{2} =  - 1}}} \\

So, using this, we get

\rm \:  =  \: \dfrac{2(7 - 3)}{7 + 3}

\rm \:  =  \: \dfrac{2 \times 4}{10}

\rm \:  =  \: \dfrac{4}{5}

Hence,

 \red{\rm\implies \:\boxed{\sf{ \dfrac{ \sqrt{7}  + i \sqrt{3} }{ \sqrt{7}  - i \sqrt{3}}  + \dfrac{ \sqrt{7} - i \sqrt{3}  }{ \sqrt{7} + i \sqrt{3}  }  \: is \: purely \: real}}}

 \green{\large\underline{\sf{Solution-23}}}

Given that,

\rm :\longmapsto\: {(x + iy)}^{3} = y + iv

\rm :\longmapsto\: {x}^{3} + 3 {x}^{2}(iy) + 3x {(iy)}^{2} +  {(iy)}^{3}    = y + iv

\rm :\longmapsto\: {x}^{3} + 3 {x}^{2}yi   + 3x  {i}^{2} {y}^{2} +   {i}^{3} {y}^{3}    = y + iv

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {i}^{2} =  - 1 \: \:   \: and \:  \:  \:  {i}^{3} =  - i }}} \\

So, using this, we get

\rm :\longmapsto\: {x}^{3} + 3 {x}^{2}yi    - 3x{y}^{2} - i{y}^{3}    = y + iv

\rm :\longmapsto\: ({x}^{3} - 3x {y}^{2})  + i(3{x}^{2}y- {y}^{3})= y + iv

On comparing real and Imaginary parts, we get

\rm :\longmapsto\:y =  {x}^{3} - 3 {xy}^{2}

and

\rm :\longmapsto\:v =  {3x}^{2}y -  {y}^{3}

Now, Consider

\rm :\longmapsto\:\dfrac{y}{x}  + \dfrac{v}{y}

\rm \:  =  \: \dfrac{ {x}^{3}  -  {3xy}^{2}}{x}  + \dfrac{ {3yx}^{2} -  {y}^{3}  }{y}

\rm \:  =  \: \dfrac{ x({x}^{2}  -  {3y}^{2})}{x}  + \dfrac{y({3x}^{2} -  {y}^{2})}{y}

\rm \:  =  \:  {x}^{2} -  {3y}^{2} +  {3x}^{2} -  {y}^{2}

\rm \:  =  \:  4{x}^{2} -  {4y}^{2}

\rm \:  =  \:  4({x}^{2} -  {y}^{2})

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

Argument of complex number

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Answered by juwairiyahimran18
0

\large\underline{\sf{Solution-22}}  \\  \\ Consider, \\  \\ \rm :\longmapsto\:\dfrac{ \sqrt{7} + i \sqrt{3} }{ \sqrt{7} - i \sqrt{3}} + \dfrac{ \sqrt{7} - i \sqrt{3} }{ \sqrt{7} + i \sqrt{3} } \\  \\ On \:  \:  taking  \:  \: LCM,  \:  \: we  \:  \: get \\  \\ \rm \:  =  \: \dfrac{ {( \sqrt{7} + i \sqrt{3})}^{2} + {( \sqrt{7} - i \sqrt{3})}^{2} }{( \sqrt{7} + i \sqrt{3})( \sqrt{7} - i \sqrt{3})}  \\  \\ We  \:  \: know,\\  \\ \begin{gathered} \purple{\rm :\longmapsto\:\boxed{\tt{ {(x + y)}^{2} + {(x - y)}^{2} = 2( {x}^{2} + {y}^{2})}}} \\ \end{gathered}  \\  \\ and \\  \\ \begin{gathered} \purple{\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) = {x}^{2} - {y}^{2} \: }}} \\ \end{gathered}  \\  \\ So \:  \: , using \:  \:  these \:  \:  Identities \:  \: , we \:  \:  get  \\  \\ \rm \:  =  \: \dfrac{2\bigg[ {( \sqrt{7})}^{2} + {(i \sqrt{3}) }^{2} \bigg]}{ {( \sqrt{7}) }^{2} - {(i \sqrt{3})}^{2} }  \\  \\ \rm \:  =  \: \dfrac{2(7 + 3 {i}^{2})}{7 - {3i}^{2} }   \\  \\ We \:  \:  know, \\  \\\begin{gathered} \purple{\rm :\longmapsto\:\boxed{\tt{ {i}^{2} = - 1}}} \\ \end{gathered}  \\  \\ So,  \:  \: using  \:  \: this, \:  \:  we \:  \:  get  \\  \\ \rm \:  =  \: \dfrac{2(7 - 3)}{7 + 3}  \\  \\ \rm \:  =  \: \dfrac{2 \times 4}{10} \\  \\ \rm \:  =  \: \dfrac{4}{5}  \\  \\ Hence \\  \\ \red{\rm\implies \:\boxed{\sf{ \dfrac{ \sqrt{7} + i \sqrt{3} }{ \sqrt{7} - i \sqrt{3}} + \dfrac{ \sqrt{7} - i \sqrt{3} }{ \sqrt{7} + i \sqrt{3} } \: is \: purely \: real}}}</p><p>

\green{\large\underline{\sf{Solution-23}}}  \\  \\ Given  \:  \: that,</p><p> \\  \\ \rm :\longmapsto\: {(x + iy)}^{3} = y + iv:⟼(x+iy)  \\  \\ \rm :\longmapsto\: {x}^{3} + 3 {x}^{2}(iy) + 3x {(iy)}^{2} + {(iy)}^{3}</p><p> \\  \\ \rm :\longmapsto\: {x}^{3} + 3 {x}^{2}yi + 3x {i}^{2} {y}^{2} + {i}^{3} {y}^{3}  \\  \\ We  \:  \: know, \\  \\ \begin{gathered} \purple{\rm :\longmapsto\:\boxed{\tt{ {i}^{2} = - 1 \: \: \: and \: \: \: {i}^{3} = - i }}} \\ \end{gathered}  \\  \\ So,  \:  \: using \:  \:  this,  \:  \: we  \:  \: get \\  \\\rm :\longmapsto\: {x}^{3} + 3 {x}^{2}yi - 3x{y}^{2} - i{y}^{3}  \\  \\ \rm :\longmapsto\: ({x}^{3} - 3x {y}^{2}) + i(3{x}^{2}y- {y}^{3}) \\  \\ On  \:  \: comparing  \:  \: real  \:  \: and  \:  \: Imaginary  \:  \: parts,  \:  \: we \:  \:  get \\  \\ \rm :\longmapsto\:y = {x}^{3} - 3 {xy}^{2} \\  \\ and \\  \\ \rm :\longmapsto\:v = {3x}^{2}y - {y}^{3} \\  \\ Now, \:  \:  Consider \\  \\ \rm :\longmapsto\:\dfrac{y}{x} + \dfrac{v}{y}  \\  \\ \rm \:  =  \: \dfrac{ {x}^{3} - {3xy}^{2}}{x} + \dfrac{ {3yx}^{2} - {y}^{3} }{y}    \\  \\ \rm \:  =  \: \dfrac{ x({x}^{2} - {3y}^{2})}{x} + \dfrac{y({3x}^{2} - {y}^{2})}{y}   \\  \\ \rm \:  =  \: {x}^{2} - {3y}^{2} + {3x}^{2} - {y}^{2} </p><p> \\  \\ \rm \:  =  \: 4{x}^{2} - {4y}^{2}  \\  \\ \rm \:  =  \: 4({x}^{2} - {y}^{2}) \\  \\ Hence,  \:  \: Proved.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions
Math, 9 days ago