solve by bernoulli's equation xy(1+xy^2)dy/dx=1
Answers
Answered by
16
Answer:
dx
dy
(x
2
y
3
+xy)=1
dx
dy
=
x
2
y
3
+xy
1
dy
dx
=x
2
y
3
+xy
dy
dx
−xy=x
2
y
3
x
2
1
dy
dx
−
x
y
=y
3
substitute
x
1
=u
dy
du
=−
x
2
1
dy
dx
−
dy
du
−uy=y
3
dy
du
+uy=−y
3
I.F=e
∫ydy
=e
2
y
2
u×e
2
y
2
=−∫y
3
e
2
y
2
dy
=−2(
2
y
2
−1)e
2
y
2
+c
=(2−y
2
)e
2
y
2
+c
⇒x(2−y
2
)+cxe
−
2
y
2
=1
Similar questions