Math, asked by kaizokufansub999, 2 months ago

solve by completing square​

Attachments:

Answers

Answered by TrustedAnswerer19
4

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ANSWER}}}

Given,

a {x}^{2}  + bx + c = 0 \\  \implies \: 4 {a}^{2}  {x}^{2}  + 4abx + 4ac = 0 \:  \:  \:  \{ \: multiply \: by \: 4a \} \\  \implies \:  \:  \underbrace{ {(2ax)}^{2}  + 2 \times 2ax \times b +  {b}^{2}  } _{ \large \: \:  {{(2ax + b)}^{2}  }} + 4ac =  {b}^{2}  \:  \:  \:  \{ \: add  \: \:  {b}^{2}  \: in \: both \: side \} \\  \implies \:  {(2ax + b)}^{2}  + 4ac =  {b }^{2}  \\  \implies \:  \:  {(2ax + b)}^{2}  =  {b}^{2}  - 4ac \\  \implies \: 2ax + b =  \pm \sqrt{ {b}^{2}  - 4ac}  \\  \implies \: 2ax =  - b \pm \sqrt{ {b}^{2}  - 4ac}  \\  \implies \: x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\  \\  \therefore \: x_1 =  \frac{ - b  +  \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\ x_2 =  \frac{ - b   -   \sqrt{ {b}^{2} - 4ac } }{2a}

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {ax}^{2} + bx + c = 0

Step :- 1 Take out the constant term on RHS

\rm :\longmapsto\: {ax}^{2} + bx =  - c

Step :- 2 Make the coefficient of x² unity. So Divide whole equation by a.

\rm :\longmapsto\: {x}^{2} + \dfrac{b}{a}x =  - \dfrac{c}{a}

Step :- 3 Add the square of half the coefficient of x on both sides.

\rm :\longmapsto\: {x}^{2} + \dfrac{b}{a}x  +  {\bigg(\dfrac{b}{2a} \bigg) }^{2} =  - \dfrac{c}{a}  + {\bigg(\dfrac{b}{2a} \bigg) }^{2}

can be rewritten as

\rm :\longmapsto\: {x}^{2} + 2 \times \dfrac{b}{2a}x  +  {\bigg(\dfrac{b}{2a} \bigg) }^{2} =  - \dfrac{c}{a}  + {\bigg(\dfrac{ {b}^{2} }{ {4a}^{2} } \bigg) }

We know,

  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \bf{ {x}^{2} + 2xy +  {y}^{2}  =  {(x + y)}^{2}}}

So using this identity in LHS of above expression, we get

\rm :\longmapsto\:{\bigg(x + \dfrac{b}{2a} \bigg) }^{2} = {\bigg(\dfrac{ - 4ac +  {b}^{2} }{ {4a}^{2} } \bigg) }

can be rewritten as

\rm :\longmapsto\:{\bigg(x + \dfrac{b}{2a} \bigg) }^{2} = {\dfrac{{b}^{2} - 4ac }{ {4a}^{2} }  }

\rm :\longmapsto\:{x + \dfrac{b}{2a}} = \:  \pm \:  \sqrt{{\dfrac{{b}^{2} - 4ac }{ {4a}^{2} }  }}

\rm :\longmapsto\:{x + \dfrac{b}{2a}} = \:  \pm \:  \dfrac{ \sqrt{{b}^{2} - 4ac }}{2a}

\rm :\longmapsto\:{x =  - \dfrac{b}{2a}} \:  \pm \:  \dfrac{ \sqrt{{b}^{2} - 4ac }}{2a}

\rm :\longmapsto\:{x =  } \:  \dfrac{  - b \:  \pm \: \sqrt{{b}^{2} - 4ac }}{2a}

Hence,

The solution of

\bf :\longmapsto\: {ax}^{2} + bx + c = 0

is

\bf :\longmapsto\:{x =  } \:  \dfrac{  - b \:  \pm \: \sqrt{{b}^{2} - 4ac }}{2a}

Additional Information :-

The term b² - 4ac in above expression is called Discriminant and is represented by D and is used in quadratic equations to find the nature of roots.

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

Similar questions