Math, asked by satishatbcdp9vp8p, 1 year ago

solve by completing square method 3x² + 13x + 14 = 0.

Answers

Answered by webstar0
8
3x² + 13x + 14 = 0.
= ((0 - 3x^2) + 13x) - 14 = 0
=  -1 • (3x^2 - 13x + 14) = 0
=3x ^2-6x - 7x +14. =0
= 3x(x -2) -7(x-2) = 0
now,
3x -7 =0 and x-2 = 0
= x =7/3 and x = 2

satishatbcdp9vp8p: is it completing square method
webstar0: oh srry
satishatbcdp9vp8p: can u tell me the correct one
webstar0: wait
webstar0: this is the process
webstar0: r u understand
Answered by Anonymous
1

2 {x}^{2}  - 13x + 9 = 0

move \: consonant \: to \: right - hand \: side \: and \: change \: its \: sign

2 {x}^{2}  - 13x =  \red{ - 9}

divide \: both \: side \: eq. \: by2

 \red{  {x}^{2}  -  \frac{13}{2} x =  \frac{ - 9}{2} }

add \: ( \frac{13}{4}  {)}^{2} to \: both \: side \: eq.

 {x}^{2}  -  \frac{13x}{2}   \red{+  (\frac{13}{4})^{2} } =  -  \frac{9}{2}  \red { + (  \frac{13}{4}  {)}^{2} }

using \:  {a}^{2}  - 2ab +  {b}^{2}  = (a -  {b)}^{2} factor \: the \: eq.

 \red{(x -  \frac{13}{4}  {)}^{2} } =  - 9 + ( \frac{13}{4}  {)}^{2}

{(x -  \frac{13}{4}  {)}^{2} } =  \red{ \frac{97}{16} }

solve \: eq. \: for \: x

 \red{x =    \frac{ -  \sqrt{97}  + 13}{4} }

 \red{x =    \frac{ \sqrt{97}  + 13}{4} }

the \: eq. \: has \: 2 \: sol.

 \boxed{ \pink{x =    \frac{ -  \sqrt{97}  + 13}{4} }}

  {\boxed {\orange{{{x =    \frac{ \sqrt{97}  + 13}{4} }}}}}

Similar questions