Math, asked by devanshg5868, 9 months ago

Solve by completing the square 3x2 -- 5x + 2 = 0

Answers

Answered by InfiniteSoul
15

\sf{\large{\underline{\boxed{\pink{\mathsf{♡ Question ♡}}}}}}

  • Solve by completing the square 3x^2 + 5x - 2 = 0

\sf{\large{\underline{\boxed{\pink{\mathsf{♡ solution ♡}}}}}}

\sf\implies 3x^2 + 5x - 2 = 0

\sf\implies 3x^2  + 5x = 2

  • Divide each term by 3

\sf\implies \dfrac{3x^2}{3} + \dfrac{5x}{3} = \dfrac{2}{3}

\sf\implies x^2 + \dfrac{5x}{3}= \dfrac{2}{3}

  • Divide the coefficient of x by 2, and square it and add it on both sides in the equation

\sf\longrightarrow(\dfrac{5}{3\times 2})^2

\sf\longrightarrow(\dfrac{5}{6})^2

  • add the term to each side of the equation

\sf\implies x^2 + \dfrac{5x}{3} + (\dfrac{5}{6})^2  = \dfrac{2}{3} + ( \dfrac{ 5}{6})^2

\sf\implies x^2 + \dfrac{5x}{3} + \dfrac( {5}{6} )^2 = \dfrac{2}{3} +  \dfrac{ 25}{36}

\sf{\large{\underline{\boxed{\red{\mathsf{a^2+ 2ab + b^2 = ( a + b )^2 }}}}}}

\sf\implies ( x + \dfrac{5}{6})^2 = \dfrac{2 \times 12 + 25}{36}

\sf\implies ( x + \dfrac{5}{6})^2 = \dfrac{24 + 25}{36}

\sf\implies ( x + \dfrac{5}{6})^2 = \dfrac{49}{36}

\sf\implies ( x + \dfrac{5}{6}) = \sqrt{\dfrac{49}{36}}

\sf\implies ( x + \dfrac{5}{6})= \pm\dfrac{7}{6}

  • solve for x

\sf\implies x + \dfrac{5}{6} = \dfrac{7}{6}

\sf\implies x = \dfrac{7}{6} - \dfrac{5}{6}

\sf\implies x = \dfrac{7 - 5}{6}

\sf\implies x = \dfrac{2}{6}

\sf\implies x = \dfrac{1}{3}

\sf{\large{\underline{\boxed{\green{\mathfrak{x = \dfrac{1}{3}}}}}}}

\sf\implies x + \dfrac{5}{6} = - \dfrac{7}{6}

\sf\implies x = - \dfrac{7}{6} - \dfrac{5}{6}

\sf\implies x = \dfrac{- 7 - 5}{6}

\sf\implies x = \dfrac{- 12 }{6}

\sf\implies x =  - 2

\sf{\large{\underline{\boxed{\green{\mathfrak{x = - 2 }}}}}}

\sf{\large{\underline{\boxed{\orange{\mathfrak{x = \dfrac{1}{3} \: and  - 2 }}}}}}

Answered by Anonymous
0

{\huge{\boxed{\red{\mathcal{Hello}}}}}

Solve by completing the square 3x2 -- 5x + 2 = 0

click that's one to get your answer

Attachments:
Similar questions