Math, asked by nuthanrajr2017, 4 days ago

solve by Cramer's rule by 3x + 5y=9 2y-5x=16​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given pair of linear equation is

\red{\rm :\longmapsto\:3x + 5y = 9}

and

\red{\rm :\longmapsto\: - 5x + 2y = 16}

So, above equations in matrix form can be represented as

 \purple{\rm :\longmapsto\:\bigg[ \begin{matrix}3&5 \\  - 5&2 \end{matrix} \bigg] \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered} \:  =  \: \begin{gathered}\sf \left[\begin{array}{c}9\\16\end{array}\right]\end{gathered}}

So, can be represented as

 \pink{\rm :\longmapsto\:AX = B}

where,

 \purple{\rm :\longmapsto\:A = \:\bigg[ \begin{matrix}3&5 \\ 5&2 \end{matrix} \bigg]}

 \purple{\rm :\longmapsto\:X = \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}}

 \purple{\rm :\longmapsto\:B = \begin{gathered}\sf \left[\begin{array}{c}9\\16\end{array}\right]\end{gathered}}

Now, Consider,

\rm :\longmapsto\: |A| = \begin{array}{|cc|}\sf 3 &\sf 5 \\ \sf  - 5 &\sf 2 \\\end{array} = 6 - ( - 25) = 31

So, it implies system of equations have unique solution.

So,

\rm :\longmapsto\: D_1  = \begin{array}{|cc|}\sf 9 &\sf 5  \\ \sf 16 &\sf 2\\\end{array} = 18 - 80 =  - 62

and

\rm :\longmapsto\: D_2  = \begin{array}{|cc|}\sf 3 &\sf  -5  \\ \sf 9 &\sf 16 \\\end{array} = 48 + 45 = 93

\bf\implies \:x = \dfrac{D_1}{ |A| }  = \dfrac{ - 62}{31}  =  - 2

and

\bf\implies \:y = \dfrac{D_2}{ |A| }  = \dfrac{93}{31}  = 3

Verification :

Consider first equation,

\red{\rm :\longmapsto\:3x + 5y = 9}

On substituting the values of x and y, we get

\red{\rm :\longmapsto\:3( - 2) + 5(3) = 9}

\red{\rm :\longmapsto\: - 6 + 15= 9}

\red{\rm :\longmapsto\: 9= 9}

Hence, Verified

Consider, Second equation

\red{\rm :\longmapsto\: - 5x + 2y = 16}

On substituting the values of x and y, we get

\red{\rm :\longmapsto\: - 5( - 2) + 2(3) = 16}

\red{\rm :\longmapsto\: 10 +6 = 16}

\red{\rm :\longmapsto\: 16 = 16}

Hence, Verified

Similar questions