Math, asked by abdulrehmanzubair12, 3 months ago

solve by cramers rule
3x – 2y = 4
-6x + 4y = 7

Answers

Answered by mathdude500
1

Solve the following equations by Cramer's Rule

  • 3x - 2y = 4

  • - 6x + 4y = 7

The matrix form of the above equation is

\rm :\longmapsto\:\: \begin{bmatrix} 3 &  - 2\\  - 6 & 4\end{bmatrix}\begin{gathered}\rm \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered} = \begin{gathered}\rm \left[\begin{array}{c}4\\7\end{array}\right]\end{gathered}

Here,

\rm :\longmapsto\:A\:  = \begin{bmatrix} 3 &  - 2\\  - 6 & 4\end{bmatrix}, \: X = \begin{gathered}\rm \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}, B = \:  \begin{gathered}\rm \left[\begin{array}{c}4\\7\end{array}\right]\end{gathered}

Now,

Consider,

\rm :\longmapsto\:D \:  =   |A| \: =  \begin{array}{|cc|}\sf 3 &\sf  - 2  \\ \sf  - 6 &\sf  4 \\\end{array} = 12 - 12 = 0

it implies, that system of equations is either consistent or inconsistent.

Now,

Consider,

\rm :\longmapsto\:D_1 \: =  \begin{array}{|cc|}\sf 4 &\sf  - 2  \\ \sf  - 7 &\sf  4 \\\end{array} = 16 - 14 = 2 \ne \: 0

Since,

\rm :\longmapsto\: |A|  = 0 \:  \: and \:  \: D_1 \ne \: 0

\bf\implies \:System \: of \: equations \: has \: no \: solution

Similar questions