Math, asked by kandarevaishnavi20, 3 months ago

solve by cramers rule X+Y=5, Y+Z=8, Z+X=7​

Answers

Answered by anshikaprajapati2008
0

Answer:

Y = 3

X=2

Z=5

Step-by-step explanation:

Hope it will help you

Answered by mathdude500
2

Given Question:

Solve by Cramer's Rule :-

x + y = 5

y + z = 8

z + x = 7

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

The given system of equations are

x + y = 5

y + z = 8

z + x = 7

\begin{gathered}\tt A=\left[\begin{array}{ccc}1&1&0\\0&1&1\\1&0&1\end{array}\right]\end{gathered}

\begin{gathered}\tt B=\left[\begin{array}{c}5\\8\\7\end{array}\right]\end{gathered}

\begin{gathered}\tt X=\left[\begin{array}{c}x\\y\\z\end{array}\right]\end{gathered}

\large\underline{\bold{❥︎Step :- 1 }}

Now finding |A|

</p><p> \bf \:  ⟼ |A| =  \begin{array}{|ccc|}</p><p>1 &amp; 1 &amp; 0 \\</p><p>0 &amp; 1 &amp; 1  \\</p><p>1 &amp;0 &amp; 1 \\</p><p>\end{array}

\bf \:   |A|  = 1(1 - 0) - 1(0 - 1)

\bf\implies \: |A|  = 2

\bf\implies \:system \: of \: equation \: have \: unique \: solution

\large\underline{\bold{❥︎Step :- 2 }}

\bf \:  ⟼  |D_1|  = \begin{array}{|ccc|}</p><p>5 &amp; 1 &amp; 0 \\</p><p>8 &amp; 1 &amp; 1  \\</p><p>7 &amp;0 &amp; 1 \\</p><p>\end{array}

\bf\implies \: |D_1|  = 5(1 - 0) - 1(8 - 7)

\bf\implies \: |D_1|  = 5 - 1 = 4

\large\underline{\bold{❥︎Step :- 3 }}

\bf \:  ⟼  |D_2|  = \begin{array}{|ccc|}</p><p>1 &amp; 5 &amp; 0 \\</p><p>0 &amp; 8 &amp; 1  \\</p><p>1 &amp;7 &amp; 1 \\</p><p>\end{array}

\bf\implies \: |D_2|   = 1(8 - 7) - 5(0 - 1)

\bf\implies \: |D_2|  = 1  +  5 =  6

\large\underline{\bold{❥︎Step :- 4 }}

\bf \:  ⟼  |D_3|  = \begin{array}{|ccc|}</p><p>1 &amp; 1 &amp; 5 \\</p><p>0 &amp; 1 &amp; 8  \\</p><p>1 &amp;0 &amp; 7 \\</p><p>\end{array}

\bf\implies \: |D_3|  = 1(7 - 0) - 1(0 - 8) + 5(0 - 1)

\bf\implies \: |D_3|  = 7 + 8 - 5 = 10

\large\underline{\bold{❥︎Step :- 5 }}

\bf \:  ⟼ x = \dfrac{ |D_1| }{ |A| }  = \dfrac{4}{2}  = 2

\bf \:  ⟼ y = \dfrac{ |D_2| }{ |A| }  = \dfrac{6}{2}  = 3

\bf \:  ⟼ z = \dfrac{ |D_3| }{ |A| }  = \dfrac{10}{2}  = 5

Similar questions