Math, asked by 1234kani, 1 year ago

solve by elimination 1 upon 2 bracket open x + 2 Y bracket close + 5 upon 3 bracket open x 3 x - 2 Y bracket close is equals to minus 3 upon 2,5 upon 4 bracket open x + 2 Y bracket close minus 3 upon X bracket open 3 X - 2 Y bracket close is equals to 61 upon 60​

Answers

Answered by ashishks1912
6

GIVEN :

The equations are \frac{1}{2(x+2y)}+\frac{5}{3(3x-2y)}=-\frac{3}{2} and \frac{5}{4(x+2y)}-\frac{3}{5(3x-2y)}=\frac{61}{60}

TO FIND :

The values of x and y in the given equations by using the Elimination method.

SOLUTION :

Given that the equations are

\frac{1}{2(x+2y)}+\frac{5}{3(3x-2y)}=-\frac{3}{2}\hfill (1) and \frac{5}{4(x+2y)}-\frac{3}{5(3x-2y)}=\frac{61}{60}\hfill (2)

Solving the given equations by using the Elimination method.

Let \frac{1}{x+2y}=u and \frac{1}{3x-2y}=v

Now the equations (1) and (2) becomes,

\frac{u}{2}+\frac{5v}{3}=-\frac{3}{2}\hfill (3)

and \frac{5u}{4}-\frac{3v}{5}=\frac{61}{60}\hfill (4)

From equation (4)

\frac{5u}{4}=\frac{61}{60}+\frac{3v}{5}

u=(\frac{61}{60}+\frac{3v}{5})\frac{4}{5}

u=\frac{61}{75}+\frac{12v}{25}\hfill (A)

Substitute the value of u in the equation (3) we get,

\frac{1}{2}(\frac{61}{75}+\frac{12v}{25})+\frac{5v}{3}=-\frac{3}{2}

\frac{61}{150}+\frac{6v}{25}+\frac{5v}{3}=-\frac{3}{2}

\frac{18v+125v}{75}=-\frac{3}{2}-\frac{61}{150}

\frac{143v}{75}=\frac{-225-61}{150}

143v=-\frac{286}{2}

v=-\frac{143}{143}

∴ v=-1

Substitute the value of v in the equation (A) we get,

u=\frac{61}{75}+\frac{12}{25}(-1)

u=\frac{61}{75}-\frac{12}{25}

u=\frac{61-36}{75}

u=\frac{25}{75}

u=\frac{1}{3}

From equations \frac{1}{x+2y}=u and \frac{1}{3x-2y}=v we can substitute the values of u and v we have that,

\frac{1}{x+2y}=\frac{1}{3} and \frac{1}{3x-2y}=-1

x+2y=3\hfill (5) and 1=-1(3x-2y) ⇒-3x+2y=1\hfill (6)

Now subtracting the equations (5) and (6)

x+2y=3

-3x+2y=1

(+)_(-)__(-)___

4x=4

x=\frac{4}{4}

∴ x=1            

Substituting the value of x in the equation (5),

1+2y=3

2y=3-1

2y=2

y=\frac{2}{2}

∴ y=1    

∴the values are  x=1 and y=1          

Answered by HellBoy20
0

Answer:

Same as given in the first answer

Similar questions