Math, asked by sahilkhan116, 1 month ago

solve by elimination method. 3x-y=7, 2x+5y=-1​

Answers

Answered by theabhisheksha
0

Answer:

h 45 h h k 6 ke sath hi yah kaha ja

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:3x - y = 7 -  -  - (1)

and

\rm :\longmapsto\:2x + 5 y =  -  \: 1 -  -  - (2)

On multiply equation (1) by 2 and equation (2) by 3, we get

\rm :\longmapsto\:6x -2 y = 14 -  -  - (3)

and

\rm :\longmapsto\:6x + 15 y =  -  \: 3 -  -  - (4)

On Subtracting, equation (4) from equation (3), we get

\rm :\longmapsto\: - 17y = 17

\bf\implies \:\boxed{ \tt{  \: \: y \:  =  \:  -  \: 1 \:  \: }}

On substituting y = - 1 in equation (1), we get

\rm :\longmapsto\:3x - ( - 1) = 7

\rm :\longmapsto\:3x  + 1= 7

\rm :\longmapsto\:3x = 7 - 1

\rm :\longmapsto\:3x = 6

\bf\implies \:\boxed{ \tt{  \: \: x \:  =  \:   \: 2 \:  \: }}

So, Solution of pair of linear equations is

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{x \:  =  \: 2} \\ &\sf{y \:  =  \:  -  \: 1} \end{cases}\end{gathered}\end{gathered}}

Verification :-

Consider,

\rm :\longmapsto\:3x - y = 7

On substituting the values of x and y, we get

\rm :\longmapsto\:3(2) - ( - 1) = 7

\rm :\longmapsto\:6 + 1 = 7

\rm :\longmapsto\:7 = 7

Hence, Verified

Consider

\rm :\longmapsto\:2x + 5 y =  -  \: 1

On substituting the values of x and y, we get

\rm :\longmapsto\:2(2)+ 5 ( - 1) =  -  \: 1

\rm :\longmapsto\:4 - 5 =  -  \: 1

\rm :\longmapsto\: \: -  \: 1  \: =  -  \: 1

Hence, Verified

Similar questions