Solve by factorisation 4x^2-4ax+(a^2-b^2)
Answers
Answered by
499
4x^2-4ax+(a^2-b^2)=0
=> (4x^2-4ax+a^2)-b^2=0
=>(2x-a)^2-b^2=0
=>{2x-a-b}{2x-a+b}=0
=> x=(a+b)/2 , (a-b)/2
=> (4x^2-4ax+a^2)-b^2=0
=>(2x-a)^2-b^2=0
=>{2x-a-b}{2x-a+b}=0
=> x=(a+b)/2 , (a-b)/2
Nandha444:
pls explain the 3rd step
Answered by
160
Answer:
Step-by-step explanation:
Given quadratic expression
4x²-4ax+(a²-b²)=0
=> 4x²-4ax+(a+b)(a-b)=0
/* By algebraic identity:
m²-n² =(m+n)(m-n) */
Splitting the middle term, we get
=> 4x² -2(a+b)x-2(a-b)x +(a+b)(a-b)=0
=> 2x[2x-(a+b)]-(a-b)[2x-(a+b)]=0
=> [2x-(a+b)][2x-(a-b)]=0
=> 2x-(a+b)=0 Or 2x-(a-b)=0
=> 2x = a+b Or 2x = a-b
Therefore,.
•••♪
Similar questions