Math, asked by stevenegegjegeg497, 3 months ago

Solve by gauss Jordan method
2x +9y + 3z= 1
x+ 5y+ 7z= 2
3x +2y+11z = 3​

Answers

Answered by mathdude500
2

\huge\underline{\sf{Solution-}}

Let consider the equation in the following order,

  • x + 5y + 7z = 2

  • 2x + 9y + 3z = 1

  • 3x + 2y + 11z = 3

The matrix form of the above equation is

\rm :\longmapsto\:\begin{gathered}\sf A=\left[\begin{array}{ccc}1&5&7\\2&9&3\\3&2&11\end{array}\right]\end{gathered}, \:  \: \begin{gathered}\sf B=\left[\begin{array}{c}2\\1\\3\end{array}\right]\end{gathered}

The augmented matrix is given by

\begin{gathered}\sf [A: B]=\left[\begin{array}{cccc}1&5&7&2\\2&9&3&1\\3&2&11&3\end{array}\right]\end{gathered}

\rm :\longmapsto\:OP \: R_2 \to R_2 - 2R_1

\begin{gathered}\sf [A: B]=\left[\begin{array}{cccc}1&5&7&2\\0& - 1& - 11& - 3\\3&2&11&3\end{array}\right]\end{gathered}

\rm :\longmapsto\:OP \: R_3 \to R_3 - 3R_1

\begin{gathered}\sf [A: B]=\left[\begin{array}{cccc}1&5&7&2\\0& - 1& - 11& - 3\\0& - 13& - 10& - 3\end{array}\right]\end{gathered}

\rm :\longmapsto\:OP \: R_2 \to  - R_2 \\ \rm :\longmapsto\:OP \: R_3 \to  - R_3

\begin{gathered}\sf [A: B]=\left[\begin{array}{cccc}1&5&7&2\\0&  1&  11&  3\\0&  13&  10&  3\end{array}\right]\end{gathered}

\rm :\longmapsto\:OP \: R_3 \to R_3 - 13R_2

\begin{gathered}\sf [A: B]=\left[\begin{array}{cccc}1&5&7&2\\0&  1&  11&  3\\0&  0&   - 133&   - 36\end{array}\right]\end{gathered}

\rm :\longmapsto\:OP \: R_1 \to R_1 - 5R_2

\begin{gathered}\sf [A: B]=\left[\begin{array}{cccc}1&0& - 48& - 13\\0&  1&  11&  3\\0&  0&   - 133&   - 36\end{array}\right]\end{gathered}

\rm :\longmapsto\:OP \: R_3 \to \:  -  \: \dfrac{1}{133}  R_3

\begin{gathered}\sf [A: B]=\left[\begin{array}{cccc}1&0& - 48& - 13\\0&  1&  11&  3\\0&  0&    1&     \dfrac{36}{133} \end{array}\right]\end{gathered}

\rm :\longmapsto\:OP \: R_2 \to R_2 - 11R_3

\begin{gathered}\sf [A: B]=\left[\begin{array}{cccc}1&0& - 48& - 13\\0&  1&  0&   \dfrac{3}{133} \\0&  0&    1&     \dfrac{36}{133} \end{array}\right]\end{gathered}

\rm :\longmapsto\:OP \: R_1 \to R_1  + 48R_3

\begin{gathered}\sf [A: B]=\left[\begin{array}{cccc}1&0&  0& -  \dfrac{1}{133} \\0&  1&  0&   \dfrac{3}{133} \\0&  0&    1&     \dfrac{36}{133} \end{array}\right]\end{gathered}

\rm :\implies\:x =  - \dfrac{1}{133}, \: y =  \dfrac{3}{133}, \: z =  \dfrac{36}{133}

Verification : -

Consider the equation

\rm :\longmapsto\:x + 5y + 7z = 2

On substituting the values of x, y and z, we get

\rm :\longmapsto\: - \dfrac{1}{133}  + 5 \times \dfrac{3}{133}  + 7 \times \dfrac{36}{133}  = 2

\rm :\longmapsto\: - \dfrac{1}{133}  + \dfrac{15}{133}  + \dfrac{252}{133}  = 2

\rm :\longmapsto\:\dfrac{ - 1 + 15 + 252}{133}  = 2

\rm :\longmapsto\:\dfrac{266}{133}  = 2

\rm :\longmapsto\:2 = 2

Hence, Verified

\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{x =  - \dfrac{1}{133} } \\  \\ &\sf{y = \dfrac{3}{133} }\\ \\  &\sf{z = \dfrac{36}{133} } \end{cases}\end{gathered}\end{gathered}

Similar questions