Math, asked by Rahul9908, 3 months ago

Solve by quadratic equations method.
find \: the \: value \: of \: x \\  \ \frac{1}{(x - 1)(x - 2)}  +  \frac{1}{(x - 2)(x - 3)}  =  \frac{2}{3}

Answers

Answered by amansharma264
103

EXPLANATION.

\sf \implies \dfrac{1}{(x - 1)(x - 2)} \ + \ \dfrac{1}{(x - 2)(x - 3)} \ = \ \dfrac{2}{3}

\sf \implies \dfrac{(x - 3) \ + \ (x - 1)}{(x - 1)(x - 2)(x - 3)} \ = \ \dfrac{2}{3}

\sf \implies \dfrac{x - 3 + x - 1}{(x - 1)(x - 2)(x - 3)} \ = \ \dfrac{2}{3}

\sf \implies \dfrac{2x - 4}{(x - 1)(x - 2)(x - 3)} \ = \ \dfrac{2}{3}

⇒ 3(2x - 4) = 2[(x - 1)(x - 2)(x - 3)].

⇒ 6x - 12 = 2[(x² - 2x - x + 2)(x - 3)].

⇒ 6x - 12 = 2[(x² - 3x + 2)(x - 3)].

⇒ 6x - 12 = 2[(x³ - 3x² - 3x² + 9x + 2x - 6].

⇒ 6x - 12 = 2[x³ - 6x² + 11x - 6].

⇒ 6x - 12 = 2x³ - 12x² + 22x - 12.

⇒ 2x³ - 12x² + 22x - 12 - 6x + 12 = 0.

⇒ 2x³ - 12x² + 16x = 0.

⇒ 2x(x² - 6x + 8) = 0.

⇒ x² - 6x + 8 = 0.

Factorizes the equation into middle term splits, we get.

⇒ x² - 4x - 2x + 8 = 0.

⇒ x(x - 4) - 2(x - 4) = 0.

⇒ (x - 2)(x - 4) = 0.

⇒ x = 2 and x = 4.

Answered by BrainlyRish
31

Given : Expression : \sf \dfrac{1}{(x - 1)(x - 2)} + \dfrac{1}{(x - 2)(x - 3)} = \dfrac{2}{3} \\\\

Exigency To Find : The value of x .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀\dag\:\:\bf Expression\:: \dfrac{1}{(x - 1)(x - 2)} + \dfrac{1}{(x - 2)(x - 3)} = \dfrac{2}{3}\\\\

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Solving \: the \: Given \: Expression \::}}\\

⠀⠀⠀⠀⠀\dag\:\:\bf Expression\:: \dfrac{1}{(x - 1)(x - 2)} + \dfrac{1}{(x - 2)(x - 3)} = \dfrac{2}{3}\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \:: \dfrac{1}{(x - 1)(x - 2)} + \dfrac{1}{(x - 2)(x - 3)} = \dfrac{2}{3}\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: \dfrac{(x-3)+ (x-1)}{(x - 1)(x - 2)(x-3)}  = \dfrac{2}{3}\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: \dfrac{x-3+ x-1}{(x - 1)(x - 2)(x-3)}  = \dfrac{2}{3}\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: \dfrac{2x-4}{(x - 1)(x - 2)(x-3)}  = \dfrac{2}{3}\\\\

Now taking 2 as common in numerator :

⠀⠀⠀⠀⠀:\implies \:\:\sf \: \dfrac{2x-4}{(x - 1)(x - 2)(x-3)}  = \dfrac{2}{3}\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: \dfrac{2(x-2)}{(x - 1)(x - 2)(x-3)}  = \dfrac{2}{3}\\\\

Now by shifting 2 :

⠀⠀⠀⠀⠀:\implies \:\:\sf \: \dfrac{x-2}{(x - 1)(x - 2)(x-3)}  = \dfrac{\cancel {2}}{3\times \cancel {2} }\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: \dfrac{x -2}{(x - 1)(x - 2)(x-3)}  = \dfrac{1}{3}\\\\

Now by Solving Denominator :

⠀⠀⠀⠀⠀:\implies \:\:\sf \: \dfrac{x -2}{(x - 1)(x - 2)(x-3)}  = \dfrac{1}{3}\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: \dfrac{x -2}{(x^2 -2x -x + 2)(x-3)}  = \dfrac{1}{3}\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: \dfrac{x -2}{(x^2 -3x + 2)(x-3)}  = \dfrac{1}{3}\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: \dfrac{x -2}{(x^3 -3x^2-3x^2+9x + 2x-6)}  = \dfrac{1}{3}\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: \dfrac{x -2}{(x^3 -6x^2+11x -6)}  = \dfrac{1}{3}\\\\

Now by Cross Multiplication :

⠀⠀⠀⠀⠀:\implies \:\:\sf \: 1\bigg(x^3 -6x^2+11x -6\bigg)= 3(x-2)\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: x^3 -6x^2+11x -6= 3x-6\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: x^3 -6x^2+11x -6-3x + 6 = 0\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: x^3 -6x^2+11x -3x -6 +6 = 0\\\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: x^3 -6x^2+8x = 0\\\\

Now taking x as common :

⠀⠀⠀⠀⠀:\implies \:\:\sf \: x(x^2 -6x+8) = 0\\\\

Therefore,

  • Quadratic Equation : x² - 6x + 8

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Solving \: the \:Equation \:  \::}}\\

⠀⠀⠀⠀⠀:\implies \:\:\sf \: x^2 -6x+8 = 0\\\\

By Splitting middle term :

⠀⠀⠀⠀⠀:\implies \:\:\sf \: x^2 -4x-2x+8 = 0\\\\

Finding out Common Factor :

⠀⠀⠀⠀⠀:\implies \:\:\sf \: x(x -4)-2(x-4) = 0\\\\

Rewrite in Factored Term :

⠀⠀⠀⠀⠀:\implies \:\:\sf \: (x -2)(x-4) = 0\\\\

Therefore,

  • x - 2 = 0
  • x = 2

And ,

  • x -4 = 0
  • x = 4

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Hence,\:The\:Value \:of\:x \:is\:\bf{2\:\:\&\: 4\:\:.}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions