Math, asked by kishansai, 3 months ago

solve by quadratic formula method​

Attachments:

Answers

Answered by aarohancoolsharma
1

Answer:

Step-by-step explanation:

4x² + 4√3x + 3    can be compared to general form ax² + bx + c

on comparing, a=4 ,

                        b=4√3  and

                        c= 3

quadratic formula:  x = ( -b ±√b²-4ac )/ 2a

on putting values of a, b, c ,

                                x = ( -4√3 ± √48 - 4(4)(3) ) / 2×4

                                x =  - 4√3/8

                                x = - √3/2

please mark as brainliest if this helped you

Answered by Anonymous
1

GIVEN :-

 \\  \sf \: 4 {x}^{2}  +  4\sqrt{3} x + 3 \\  \\

TO FIND :-

  • Roots of the equation by quadratic formula.

 \\

TO KNOW :-

 \\   \bigstar \boxed{\sf \: roots =  \frac{ - b ± \sqrt{ {b}^{2}  - 4ac}  }{2a}}  \\  \\

Here ,

  • a → Coefficient of x².
  • b → Coefficient of x.
  • c → constant.

 \\  \\

SOLUTION :-

We have ,

 \\  \sf \: 4 {x}^{2}  + 4 \sqrt{3} x + 3 \\  \\

Here ,

  • a = 4
  • b = 4√3
  • c = 3

Putting values in formula ,

 \\  \sf \: roots =  \frac{ - 4 \sqrt{3} ± \:   \sqrt{ {(4 \sqrt{3}) }^{2} - 4(4)(3) }  }{2(4)}  \\  \\  \\  \implies \sf \:  \frac{ - 4 \sqrt{3}  ± \sqrt{48 - 48}  }{8}  \\ \\   \\    \sf \implies \frac{ - 4 \sqrt{3} ± \sqrt{0} }{8}   \\  \\

Discriminant is 0 . Hence , roots are equal.

 \\  \implies \sf \:  \frac{ - 4 \sqrt{3} }{8}  \:  \:  \: ,  \:  \:   \frac{ - 4 \sqrt{3} }{8}  \\  \\  \\  \implies  \boxed{\sf \:  \frac{ -  \sqrt{3} }{2}  \:  \:  \: ,  \:  \:  \frac{ -  \sqrt{3} }{2} } \\  \\

Hence , roots are -√3/2 , -√3/2.

 \\

TO CHECK :-

 \\  \sf \: 4 {x}^{2}  + 4 \sqrt{3}x  + 3  = 0\\    \\  \sf \implies  \: 4  {\left( \frac{ -  \sqrt{3} }{2}  \right)}^{2}  + 4 \sqrt{3} \left( \frac{ -  \sqrt{3} }{2}  \right) + 3 = 0 \\ \\   \\  \implies \sf \:  \cancel{4}\left(  \frac{3}{ \cancel{4}} \right)  -   \cancel\frac{12}{2}  + 3 = 0 \\  \\  \\  \implies \sf \: 3 - 6 + 3 = 0 \\ \\ \\  \implies \sf \: 0 = 0 \:  \:  \:  \:  \: (verified)

Similar questions