Math, asked by Chrispage811, 7 months ago

Solve by substitution: 3x-y=4 and 4y=3x+11

Answers

Answered by yamanjaikumar
2

Step-by-step explanation:

3x-y = 4

y= 3x-4

put above value of y in second equation

4y = 3x + 11

4(3x-4) = 3x + 11

12x - 16 = 3x + 11

12x - 3x = 11 + 16

9x = 27

x = 3

y= 3x - 4

y = 3(3) - 4

y= 9-4

y=5

Answered by Bᴇʏᴏɴᴅᴇʀ
12

Answer:-

\large\leadsto\boxed{\sf\purple{x = 3}}

\large\leadsto\boxed{\sf\purple{y = 5}}

Given:-

\sf{3x-y = 4} \: \: \: \longrightarrow\bf\green{[eqn.1]}

\sf{4y = 3x + 11} \: \: \: \longrightarrow\bf\green{[eqn.2]}

Method:-

✧ Substitution method

Solution:-

Taking [eqn.1]:-

\sf{3x-y = 4}

\bf{y = 3x-4}

Substituting the value of y in [eqn.2]:-

\sf{4y = 3x + 11}

\sf{4(3x-4) = 3x + 11}

\sf{12x - 16 = 3x + 11}

\sf{12x - 3x = 11 + 16}

\sf{9x = 27}

\sf{x = \dfrac{27}{9}}

\implies\bf\red{x = 3}

Substituting the value of x in eqn.[1]:-

\sf{3x - y = 4}

\sf{3(3) - y = 4}

\sf{9 - y = 4}

\sf{y = 9 - 4}

\implies\bf\red{y = 5}

Hence,

\pink{\bigstar}\large\boxed{\sf{x = 3}}

\pink{\bigstar}\large\boxed{\sf{y = 5}}

Similar questions