solve by using quadratic formula
a) z² - 32z - 105 = 0
b) 40 + 3x - x² = 0
c) 6 - x - x² = 0
d) 7x² + 49x + 84 = 0
e) m² + 17mn -84n² = 0
Answers
therefore this is ur answer
mark as brainliest
Answer:
Solution :
We have ,
\sf\:f(x)={x}^{2}-p(x+1)-cf(x)=x
2
−p(x+1)−c
\sf \implies \: f(x) = x{}^{2} - px - p- c⟹f(x)=x
2
−px−p−c
\sf \implies \: f(x) = {x}^{2} - px - (p + c)⟹f(x)=x
2
−px−(p+c)
We know that ,
\sf \alpha + \beta = \dfrac{ - cofficient \: of \: x}{cofficient \: of \: x {}^{2} }α+β=
cofficientofx
2
−cofficientofx
\sf \implies \alpha + \beta = \dfrac{ - ( - p)}{ 1} = p...(1)⟹α+β=
1
−(−p)
=p...(1)
\sf \: and \: \alpha \beta = \dfrac{constant}{cofficient \: of \: x {}^{2} }andαβ=
cofficientofx
2
constant
\sf \implies \alpha \beta = \dfrac{ - (p + c)}{1} = - (p + c)..(2)⟹αβ=
1
−(p+c)
=−(p+c)..(2)
We have to find the value of
\sf(\alpha+1)(\beta+1)(α+1)(β+1)
\sf = \alpha \beta + \alpha + \beta + 1=αβ+α+β+1
\sf = \alpha \beta + ( \alpha + \beta ) + 1=αβ+(α+β)+1
Now put the values of equation (1) and (2)
\sf = - (p + c) + p + 1=−(p+c)+p+1
\sf = - p - c + p + 1=−p−c+p+1
\sf = 1 - c=1−c