Math, asked by NainaMehra, 1 year ago

Solve by using quadratic formula:

8. \: 5{}^{2x - 1  }  + 5 {}^{ x+ 1}  = 250
Ans: 2

Class 10

Content Quality Solution Required

❎ Don't Spamming ❎

Answers

Answered by abhi569
2
Discriminant = b² - 4ac

=> (25)² - 4(5)(-1250)
=> 625 + 5000
=> 5625

Hence, applying quadratic equation,

t = \frac{ - b + \sqrt{d} }{2a} \: \: \: \: or \: \: \: \: \: t= \frac{ - b - \sqrt{d} }{2a} \\ \\ \\ => t = \frac{ - 25 + \sqrt{5625} }{2(1)} \: \: \: or \: \: \: \: t= \frac{ - 25 - \sqrt{5625} }{2(1)} \\ \\ \\ = > t = \frac{ - 25 + 75}{2} \: \: \: \: \: or \: \: \: \: \: t= \frac{ - 25 - 75}{2} \\ \\ \\ => t= \frac{50}{2} \: \: \: or \: \: \: \: \: t = \frac{ - 100}{2} \\ \\ \\ \\ t = 25 \: \: \: or \: \: \: t= -50




Neglect, t = -50


t = 25
5^x = 25
5^x = 5^2
x = 2
Attachments:
Answered by siddhartharao77
3
Given :  5^{2x - 1} +  5^{x + 1}  = 250

 = \ \textgreater \  5^{2x} *  5^{-1} +  5^{x} *  5^{1} = 250

= \ \textgreater \  ( 5^{x})^2 *  5^{-1}  +  5^{x} *  5^{1} = 250

= \ \textgreater \   \frac{ (5^{x})^2 }{5} +  5^{x} * 5^1 = 250

Let 5^x = y.

= \ \textgreater \   \frac{y^2}{5} + 5y = 250

= \ \textgreater \  y^2 + 25y = 1250

= > y^2 + 25y - 1250 = 0

(1) 

= \ \textgreater \  x =  \frac{-b +  \sqrt{b^2 - 4ac} }{2a}

= \ \textgreater \   \frac{-(25) \sqrt{(25)^2 - 4(1)(-1250)} }{2}

= \ \textgreater \   \frac{-25 +  \sqrt{625 + 5000} }{2}

= \ \textgreater \   \frac{-25 +  \sqrt{5625} }{2}

= \ \textgreater \   \frac{-25 + 75}{2}

= \ \textgreater \   \frac{50}{2}

= > 25.



(2) 

= \ \textgreater \   \frac{-b -  \sqrt{b^2 - 4ac} }{2a}

= \ \textgreater \   \frac{-b -  \sqrt{(25)^2 - 4(1)(-1250} }{2}

= \ \textgreater \   \frac{-(25) -  \sqrt{625 + 5000} }{2}

= \ \textgreater \   \frac{-25 - 75}{2}

= > -100/2

= > -50.


Therefore the values are 25,-50.

Neglect -ve values. Then the value is y = 25.

Now,

= > 5^x = 25

= > 5^x = 5^2

= > x = 2.



Hope this helps!

siddhartharao77: :-)
Similar questions