Math, asked by mathslover339, 4 months ago

solve correct answer​

Attachments:

Answers

Answered by BrainlyEmpire
18

\huge\red\checkmark Dimension of Velocity = \bf{[M^0\:L^1\:T^{-1}]} \\

\huge\red\checkmark Dimension of wavelength = \bf{[M^0\:L^1\:T^0]} \\

\huge\red\checkmark Dimension of g = \bf{[M^0\:L^1\:T^{-2}]} \\

\huge{\color{aqua}\checkmark} Dimension of \red{\rho} = \bf{[M^1\:L^{-3}\:T^0]} \\

Let,

\bf\pink{v\:\propto\:\lambda^{a}\:g^{b}\:\rho^{c}\:} \\

☯︎ Using dimensional method,

\bf{:\implies\:[M^0\:L^1\:T^{-1}]\:=\:[L^1]^{a}\:[L^1\:T^{-2}]^{b}\:[M^1\:L^{-3}]^{c}\:} \\

\bf{:\implies\:[M^0\:L^1\:T^{-1}]\:=\:[L^a]\:[L^b\:T^{-2b}]\:[M^c\:L^{-3c}]\:} \\

\bf{:\implies\:[M^0\:L^1\:T^{-1}]\:=\:\Big[M^c\:L^{(a\:+\:b\:-\:3c)}\:T^{-2b}\Big]\:} \\

✈︎ From L.H.S & R.H.S, we get

\bf{1)\:c\:=\:0\:} \\

\bf{2)\:a\:+\:b\:-\:3c\:=\:1\:} \\

\bf{3)\:-2b\:=\:-1\:} \\

\bf{:\implies\:b\:=\:\dfrac{1}{2}\:} \\

➪ Now putting the value of c & b in condition (2), we get

\bf{2)\:a\:+\:b\:-\:3c\:=\:1\:} \\

\bf{:\implies\:a\:+\:\dfrac{1}{2}\:-\:3\times{0}\:=\:1\:} \\

\bf{:\implies\:a\:+\:\dfrac{1}{2}\:-\:0\:=\:1\:} \\

\bf{:\implies\:a\:=\:1\:-\:\dfrac{1}{2}\:} \\

\bf{:\implies\:a\:=\:\dfrac{2\:-\:1}{2}\:} \\

\bf{:\implies\:a\:=\:\dfrac{1}{2}\:} \\

\huge\red\therefore \bf{v\:\propto\:\:\lambda^{1/2}\:g^{1/2}\:\rho^{0}\:} \\

\bf\green{:\implies\:v\:\propto\:\:\sqrt{\lambda\:g}\:} \\

\bf\blue{:\implies\:v^2\:\propto\:\:{\lambda\:g}\:} \\

Answered by divyanshparekh
1

Step-by-step explanation:

the correct solution is given below

Attachments:
Similar questions