Math, asked by sairaj60, 10 months ago

solve cos theta divided by 1 - sin theta + cos theta divided by 1 + sin theta is equals to 4​

Answers

Answered by Anonymous
16

Answer :-

θ = 60°

Explanation :-

 \rm  \dfrac{cos \theta}{1 - sin \theta }  +  \dfrac{cos \theta}{1 + sin \theta}  = 4 \\  \\ \\

 \text{Taking LCM} \\  \\  \\

 \rm \implies  \dfrac{cos \theta(1 + sin \theta) + cos \theta(1 - sin \theta)}{(1 - sin \theta)(1 + sin \theta) }= 4 \\  \\ \\

 \rm \implies  \dfrac{cos \theta + cos \theta .sin \theta+ cos \theta - cos \theta .sin \theta}{1^{2}  - sin^{2}  \theta }= 4 \\  \\ \\

 \boxed{\boxed{  \bf \because (x  - y)(x + y) =  {x}^{2}   -  {y}^{2} }} \\  \\  \\

 \rm \implies  \dfrac{2cos \theta }{1  - sin^{2}  \theta }= 4 \\  \\ \\

 \rm \implies  \dfrac{2cos \theta }{cos^{2} \theta}= 4 \\  \\ \\

 \boxed{\boxed{  \bf \because 1 - sin^{2} \theta = cos^{2}  \theta   }} \\  \\  \\

 \rm \implies  \dfrac{2cos \theta }{cos\theta.cos \theta}= 4 \\  \\ \\

 \rm \implies  \dfrac{2 }{cos \theta}= 4 \\  \\ \\

 \rm \implies 2 = 4cos \theta \\  \\ \\

 \rm \implies  \dfrac{2}{4} = cos \theta \\  \\ \\

 \rm \implies  \dfrac{1}{2} = cos \theta \\  \\ \\

 \rm \implies  cos  \ 60^{ \circ} = cos \theta \\  \\ \\

 \boxed{\boxed{  \bf \because cos \ 60^{ \circ}  =  \dfrac{1}{2}   }} \\  \\  \\

 \rm \implies 60^{ \circ} = \theta \\  \\ \\

 \rm \implies  \theta = 60^{ \circ} \\  \\ \\

\huge{\boxed{ \boxed{\tt{ \therefore  \theta = 60^{ \circ}}}}}

Answered by DhanyaDA
7

Given:

 \\  \sf \:  \dfrac{cos \theta }{1 - sin \: \theta}  +  \dfrac{cos \: \theta}{1 + sin \: \theta } = 4

To find:

\sf value \: of \: \theta

Explanation:

 \implies \:  \sf \:  \dfrac{cos \: \theta(1 + sin  \theta) +cos \: \theta(1  -  sin  \theta)   }{(1 + sin \:\theta)(1 - sin \:\theta)} = 4  \\  \\  \implies \:  \sf \:  \dfrac{cos\theta + cos\theta \: sin\theta + cos  \theta - cos\theta \: sin\theta}{1 -  {sin}^{2}\theta \: } = 4

we know that

\underline{\tt (a+b)(a-b)=a^2-b^2}

\underline{\tt 1-sin^2 \theta=cos^2 \theta}

\implies \:  \sf \:  \dfrac{2cos\theta}{ {cos}^{2} \theta} = 4 \\  \\  \implies \:  \sf  \dfrac{2}{cos \theta}   = 4 \\  \\ \implies \:  \sf cos \theta =  \dfrac{1}{2}

\huge{\boxed{\boxed{\tt \theta=60\degree}}}

More information:

↔Cosec²a-cot²a=1

↔sec²a-tan²a=1

↔sin²a+cos²a=1

Similar questions