solve cosA+cos7A=cos4A
Answers
Answered by
0
Answer:
(cos3A+2cos5A+cos7A)/(cosA+2cos3A+cos5A)
= 2cos 5A [cos 2A + 1] / 2cos 3A [cos 2A + 1]
= cos 5A / cos 3A
= [cos 3A cos 2A -- sin 3A sin 2A] /cos 3A
= cos 2A -- sin 2A tan 3A
Hope this helps!!
Pls mark me as brainliest!!
Answered by
0
Answer:
The answer is A= π/9 (or) 5π/9
Step-by-step explanation:
Given : cosA+cos7A=cos4A
2cos(7A+A/2).cos(7A-A/2)=cos4A
2cos(8A/2).cos(6A/2)=cos4A
2.cos4A .cos3A=cos4A
2cos3A=1
cos3A=1/2
3A=cos⁻¹(1/2)
3A= π/3, 5π/3
A= π/9 (or) 5π/9
Similar questions