solve (d^4+2d^3-3d^2)y=x ^2+3e2x +4sinx
Answers
Step-by-step explanation:
Simplifying
(d4 + 2d3 + -3d2) * y = x2 + 3e2x + 4sinx
Reorder the terms:
(-3d2 + 2d3 + d4) * y = x2 + 3e2x + 4sinx
Reorder the terms for easier multiplication:
y(-3d2 + 2d3 + d4) = x2 + 3e2x + 4sinx
(-3d2 * y + 2d3 * y + d4 * y) = x2 + 3e2x + 4sinx
(-3d2y + 2d3y + d4y) = x2 + 3e2x + 4sinx
Reorder the terms:
-3d2y + 2d3y + d4y = 3e2x + 4insx + x2
Solving
-3d2y + 2d3y + d4y = 3e2x + 4insx + x2
Solving for variable 'd'.
Reorder the terms:
-3d2y + 2d3y + d4y + -3e2x + -4insx + -1x2 = 3e2x + -3e2x + 4insx + -4insx + x2 + -1x2
Combine like terms: 3e2x + -3e2x = 0
-3d2y + 2d3y + d4y + -3e2x + -4insx + -1x2 = 0 + 4insx + -4insx + x2 + -1x2
-3d2y + 2d3y + d4y + -3e2x + -4insx + -1x2 = 4insx + -4insx + x2 + -1x2
Combine like terms: 4insx + -4insx = 0
-3d2y + 2d3y + d4y + -3e2x + -4insx + -1x2 = 0 + x2 + -1x2
-3d2y + 2d3y + d4y + -3e2x + -4insx + -1x2 = x2 + -1x2
Combine like terms: x2 + -1x2 = 0
-3d2y + 2d3y + d4y + -3e2x + -4insx + -1x2 = 0
The solution to this equation could not be determined.