solve-(D²+D+1)=sin2x
Answers
Answered by
0
Answer:
This method is solve by linear differential equations
Step-by-step explanation:
step1- let r.h.s.=0,D=m,
then solve it,THEN now we have C.F.
step2- now for P.I.
1 /D²+D+1 ×SIN2X
PUT D=2
THEN
SIN2X/7
step3-C.F. + P.I. IS THE ANSWER
Answered by
2
Step-by-step explanation:
(D²+D+1)y = Sin2x
A.E. - m² + m + 1 = 0
m = -1 + √1-4 / 2
m = -1 + √3i / 2
m = w , w²
C.F. = C1*e^wx + C2*e^w²x
P.I. = 1/(D²+D+1) * Sin2x
= 1 / (-4+D+1) * Sin2x {D² --> -a²}
= 1/(D-3) * (D+3)/(D+3) * Sin2x
= (D+3)/(D²-9) * Sin2x
= (D+3)/(-4-9) * Sin2x
= -1/13 {2Cos2x + 3Sin2x}
व्यापक हल y = C.F + P.I.
y = C1*e^wx + C2*e^w²x -1/13 {2Cos2x + 3Sin2x}
Similar questions